
A Bias-Corrected CD Test for Error Cross-Sectional

Dependence in Panel Data Models with Latent Factors∗

M. Hashem Pesaran

University of Southen California, USA, and Trinity College, Cambridge, UK

Yimeng Xie

Department of Statistics and Data Science, School of Economics,

and Wang Yanan Institute for Studies in Economics (WISE), Xiamen University

August 18, 2021

Abstract

In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test

proposed by Pesaran (2004) to residuals from panels with latent factors results in over-rejection

and propose a randomized test statistic to correct for over-rejection, and add a screening component

to achieve power. This paper considers the same problem but from a different perspective and

shows that the standard CD test remains valid if the latent factors are weak, and proposes a simple

bias-corrected CD test, labelled CD*, which is shown to be asymptotically normal, irrespective

of whether the latent factors are weak or strong. This result is shown to hold for pure latent

factor models as well as for panel regressions with latent factors. Small sample properties of the

CD* test are investigated by Monte Carlo experiments and are shown to have the correct size

and satisfactory power for both Gaussian and non-Gaussian errors. In contrast, it is found that

JR’s test tends to over-reject in the case of panels with non-Gaussian errors, and have low power

against spatial network alternatives. The use of the CD* test is illustrated with two empirical

applications from the literature.
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1 Introduction

It is now quite standard to use latent multi-factor models to characterize and explain cross-

sectional dependence in panels when the cross section dimension (n) and the time series dimen-

sion (T ) are both large. However, due to uncertainty regarding the nature of error cross-sectional

dependence, it is arguable whether the cross-sectional dependence is fully accounted for by la-

tent factors. Some of the factors could be semi-strong, and the errors might have spatial or

network features that are not necessarily captured by common factors alone.1 It is, therefore,

desirable to test for error cross-sectional dependence once the common factor effects are filtered

out.

In a recent paper Juodis and Reese (2021) (JR) show that the application of the CD test

proposed by Pesaran (2004, 2015a)2 to residuals from panels with latent factors is invalid and

can result in over-rejection of the null of error cross-sectional independence. They propose a

randomized CD test statistic as a solution. Their proposed test is constructed in two steps.

First, they multiply the residuals from panel regressions with independent randomized weights

to obtain their CDW statistic, which will have a zero mean by construction. In this way they

avoid the over-rejection problem of the CD test, but by the very nature of the randomization

process they recognize that the CDW test will lack power. To overcome the problem of lack

of power, JR modify the CDW test statistic by adding to it a screening component proposed

by Fan et al. (2015) which is expected to tend to zero with probability approaching one under

the null hypothesis, but to diverge at a reasonably fast rate under the alternative. This further

modification of CDW test is denoted by CDW+. Accordingly, it is presumed that the CDW+ test

can overcome both over-rejection and the low power problems. However, JR do not provide

a formal proof establishing conditions under which the screening component tends to zero

under the null and diverges sufficiently fast under alternatives, including spatial or network

dependence type alternatives. Using theoretical results established by Bailey et al. (2019) for

correlation coefficients we show that the screening component in JR need not converge to zero.

Also, our Monte Carlo simulations show that the CDW+ test tends to over-reject when the

errors are non-Gaussain and n >> T ,3 and seems to lack power under spatial alternatives,

which is likely to be particularly important in empirical applications.

In this paper we consider the same problem and show that the standard CD test is in fact

valid for testing error cross-sectional dependence in panel data models with weak latent factors.

However, when the latent factors are semi-strong or strong the use of CD test will result in

1See, for example, Chudik et al. (2011) where the different sources of cross-sectional dependence are discussed.
It is shown that for a factor model to capture spatial dependence one needs a weak factor model where the
number of weak factors tends to infinity with the cross section dimension, n.

2For a published version of Pesaran (2004) see Pesaran (2021).
3The experiments under non-Gaussian errors continue to satisfy JR’s moment condition (specified in their

Assumption 1) since the errors are generated as chi-squared variates.
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over-rejection and will no longer be valid, extending JR’s results to panels with semi-strong

latent factors.4 In short, whilst the CDW+ is a useful and welcome addition to testing for error

cross-sectional dependence, it would be interesting to develop a modified version of the test

that simultaneously deals with the over-rejection problem and does not compromise power for

a general class of alternatives. To that end, firstly we study testing for error cross-sectional

dependence in a pure latent factor model, and derive an explicit expression for the bias of the

CD test statistic in terms of factor loadings and error variances. We then propose a bias-

corrected version of the CD test statistic, denoted by CD∗, which is shown to have N(0, 1)

asymptotic distribution under the null hypothesis irrespective of whether the latent factors are

weak or strong. When the latent factors are weak the correction tends to zero, CD and CD∗

will be asymptotically equivalent. However, CD−CD∗ diverges if at least one of the underlying

latent factors is strong. We show that CD∗ converges to a standard normal distribution when

n and T tend to infinity so long as n/T → κ, where 0 < κ < ∞, and a test based on CD∗

will have the correct size asymptotically. We then consider the application of the CD∗ to test

error cross-sectional dependence in the case of panel regressions with latent factors, discussed

in Pesaran (2006). It is shown that the asymptotic properties of CD∗ in the case of pure latent

factor models also carry over to panel data models with latent factors.

The finite sample performance of the CD∗ test is investigated by Monte Carlo simulations.

It is found that CD∗ test avoids the over-rejection problem under the null and diverges fast

under spatial alternatives, and has desirable small sample properties regardless of whether the

errors are Gaussian or not, under different combinations of n and T . Although computation of

CD∗ requires estimation of factors and their loadings, the simulation results suggest that prior

information of the number of latent factors is unnecessary so long as the number of estimated

(selected) factors is no less than the true number. It is also shown that as compared to JR’s

CDW+ test, the proposed bias-corrected CD test is better in controlling the size of the test and

has much better power properties against spatial (or network) alternatives.

The use of CD∗ is illustrated by two empirical applications studied in literature. In the first

application, we examine modeling real house price changes in the U.S. Because it is evident

that real house price changes are driven by macroeconomic trends which can be modeled by

latent factors, it is necessary to filter out these factors before testing for spillover effect. By

applying CD∗ to real house price changes in the U.S. we are able to show significant existence

of weak cross-sectional dependence in addition to latent factors. In the second application,

we consider modeling R&D investment in industries. Because there is knowledge spillover

between industries as well as other cross-sectional dependencies, modeling R&D investment

needs to include latent factors and researchers usually apply the CCE approaches proposed by

Pesaran (2006) to estimate coefficients. With CD∗, we find that the evidence of cross-sectional

4The concepts of weak, semi-strong and strong factors are formalized and discussed by Chudik et al. (2011).
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dependence in the CCE residuals of modeling R&D investment is weak when the number of

selected principal components (PCs) is sufficiently large.

The paper is set out as follows: Section 2 considers a pure latent factor model, establishes

the limiting properties of the CD test in the presence of latent factors, derives the bias-corrected

test statistic, CD∗, and establishes its asymptotic distribution. Extension to panel data models

with latent factors are discussed in Section 3. Section 4 sets up the Monte Carlo experiments

and reports the small sample properties of CD, CD∗ and, CDW+ tests. Section 5 provides the

empirical illustrations. Technical discussions, formal proofs and additional empirical findings

are relegated to the Appendix and online supplement.

Notations: For the n× n matrix A = (aij), we denote its smallest and largest eigenvalues

by λmin (A) and λmax (A) , respectively, its trace by tr (A) =
∑n

i=1 aii, its spectral radius by

ρ (A) = |λmax (A)|, its Frobenius norm by ‖A‖F , its spectral norm by ‖A‖ = λ
1/2
max (A′A) ≤

‖A‖F , its maximum absolute column sum norm by ‖A‖1 = max1≤j≤n (
∑n

i=1 |aij|), and its

maximum absolute row sum norm by ‖A‖∞ = max1≤i≤n

(∑n
j=1 |aij|

)
. We write A > 0 when

A is positive definite. We denote the `p-norm of the random variable x by ‖x‖p = E (|x|p)1/p

for p ≥ 1, assuming that E (|x|p) < K. →p denotes convergence in probability,
a.s.→ almost sure

convergence, →d convergence in distribution, and
a∼ asymptotic equivalence in distribution.

Op (·) and op (·) denote the stochastic order relations. In particular, op(1) indicates terms that

tend to zero in probability as (n, T )→∞, such that n/T → κ, where 0 < κ <∞. K and c will

be used to denote finite large and non-zero small positive numbers, respectively, that do not

depend on n and T . They can take different values at different instances. If {fn}∞n=1 is any real

sequence and {gn}∞n=1 is a sequence of positive real numbers, then fn = O(gn), if there exists

K such that |fn| /gn ≤ K for all n. fn = o(gn) if fn/gn → 0 as n→∞. If {fn}∞n=1 and {gn}∞n=1

are both positive sequences of real numbers, then fn = 	 (gn) if there exists n0 ≥ 1 and positive

finite constants K0 and K1, such that infn≥n0 (fn/gn) ≥ K0, and supn≥n0
(fn/gn) ≤ K1.

2 Tests of error cross-sectional dependence for a pure

latent factor model

2.1 Pure latent factor model

Initially, we consider the following pure multi-factor model,

yit = γ
′

ift + uit, (1)

for i = 1, 2, ..., n; and t = 1, 2, ..., T, where ft = (f1t, f2t, ..., fm0t)
′ is an m0 × 1 vector of

unobserved factors and γi = (γi1, γi2, ..., γim0)
′ is the associated vector of unknown coefficients.
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Initially we also assume that m0, the true number of factors, is known, and make the following

assumptions:

Assumption 1 (a) ft is a covariance-stationary stochastic process with zero means and covari-

ance matrix, E (ftf
′
t) = Σff > 0, where F = (f1, f2, ..., fT )′. (b) T−1

∑T
t=1 [‖ft‖j − E (‖ft‖j)]→p0,

for j = 3, 4, as T → ∞. (c) There exists T0 such that for all T > T0, T−1
∑T

t=1 ftf
′
t =

T−1F′F = ΣT,ff > 0, and ΣT,ff →p Σff > 0.

Assumption 2 The m0 × 1 vector of factor loadings γi is bounded such that supi ‖γi‖ < K,

n−1
∑n

i=1 γiγ
′
i = Σn,γγ → Σγγ > 0.

Assumption 3 uit ∼ IID(0, σ2
i ), supiσ

2
i < K, infiσ

2
i > c, and E

(
|uit|8+c) < K. (a) uit is

symmetrically distributed around its mean E(uit) = 0, and there exists a finite integer T0 such

that for all T > T0, ω
2
i,T = T−1u′iMFui > c > 0,

E

(
u′iMFui

T

)−4−c

< K, (2)

for all i, where ui = (ui1, ui2, ..., uiT )′ and MF = IT−F(F′F)−1F′. (b) uit and ujt′ are distributed

independently for all i 6= j and t 6= t′, such that λmax (VT ) = Op(1), where VT = T−1
∑T

t=1 utu
′
t,

and ut = (u1t, u2t, ..., unt). (c) for all i and t, uit is distributed independently of ft′ and γj, for

all i, j,t and t. (d) for a sequence of bounded constants, bin, such that n−1
∑n

i=1 b
2
in = O(1),

1√
nT

n∑
i=1

T∑
t=1

binfjtuitγij = Op(1), for j = 1, 2, ...,m0. (3)

Remark 1 Under the above assumptions, the self-normalized error, ζit,T , defined by

ζit,T =
uit
ωi,T

= εit/(T
−1ε′iMFεi)

1/2,

where εit = uit/σi, and εi = (εi1, εi2, ..., εiT )′ exists, and is also symmetrically distributed with

E (ζit,T ) = 0.

Remark 2 The fact that there exists a finite T0 such that (2) holds can be established readily if

it is further assumed that εi ∼ IIDN(0, IT ). In this case ε′iMFεi is distributed as χ2
T−m0

and

E
(

1
ε′iMFεi

)4

< K so long as T > m0 + 8. Under non-Gaussian errors a larger value of T will

be needed for the moment condition (2) to hold.

Remark 3 The sequence of bounded constants, bin, is introduced in (3) for convenience and can

be readily absorbed as scalars of fjt and γij, since factors and their loadings are only identified

up to rotations.
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To allow one or more of the latent factors to be weak, following Bailey et al. (2021) we

denote the strength of factor j by αj as defined by the rate at which the sum of absolute values

of factor loadings rises with n, namely

n∑
i=1

|γij| = 	 (nαj) , for j = 1, 2, . . . ,m0. (4)

The case of strong factors assumed in the principal component analysis (PCA) literature cor-

responds to αj = 1, for j = 1, 2, ...,m0. Under the weak factor case discussed below, αj < 1/2

for all j. We also denote the maximum value of αj by α = maxj(αj).

Most of the above assumptions relate closely to those made in the literature on CD tests and

large dimensional factor models. See, for example, the assumptions in Pesaran (2004, 2015a),

and assumptions L and LFE in Bai and Ng (2008). The zero means in Assumption 1 are not

restrictive and will be relaxed when we consider panel data models with observed regressors.

Under Assumption 2 all factors are required to be strong. Since γi and ft are identified only up

to an m0×m0 non-singular rotation matrix, we set Σγγ = Im0 , where Im0 is an identity matrix

of order m0. However, later we show that our main Theorem 1 continues to hold so long as the

maximum factor strength α = maxj(αj) = 1, namely there is at least one strong factor. It is

not required that all m0 latent factors should be strong, as required when Assumption 2 holds.

Assumption 3 is a technical assumption, also made for the proof of the asymptotic normality

of the standard CD test.

Under the above assumptions the asymptotic results of Bai (2003) apply, and the latent

factors and their loadings can be estimated using PCs, given as the solution to the following

optimization problem

min
F,Γ

n∑
i=1

T∑
t=1

(
yit − γ

′

ift

)2

,

where F = (f1, f2, . . . , fT )
′
and Γ = (γ1,γ2, . . . ,γn)

′
, with the estimates F̂ and Γ̂ satisfying the

normalization restrictions:

Γ̂
′
Γ̂

n
= Im0 , and

F̂
′
F̂

T
is a diagonal matrix.

Then estimators of factors and their loadings are given by

Γ̂ =
√
nQ̂, and F̂ =

1√
n

YQ̂, (5)

where we define yi = (yi1, yi2, . . . , yiT )
′

for i = 1, 2, . . . , n so that Y = (y1,y2, . . . ,yn) is the

T × n matrix of observations on yit and Q̂ is n × m0 matrix of the associated orthonormal

eigenvectors of Y
′
Y. Then the residuals to be used in the construction of the CD test statistics
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are given by

eit = yit − γ̂
′

if̂t. (6)

2.2 The CD test and its JR modification

The CD test statistic based on the residuals, (6), is given by

CD =

√
2T

n(n− 1)

(
n−1∑
i=1

n∑
j=i+1

ρ̂ij,T

)
, (7)

where ρ̂ij,T = T−1
∑T

t=1 ẽit,T ẽjt,T , ẽit,T is the scaled residual defined by,

ẽit,T =
eit
σ̂i,T

, (8)

and σ̂2
i,T = T−1

∑T
t=1 e

2
it > c > 0.5 JR consider a panel regression model with latent factors,

assuming that all the factors are strong and show that in that case CD = Op

(√
T
)

, and its

use will lead to gross over-rejection of the null of error cross-sectional independence. To deal

with the over-rejection problem they propose the following randomized CD test based on the

random weights, wi, drawn independently of the residuals, ejt, namely6

CDW =

√
2

Tn(n− 1)

T∑
t=1

n∑
i=2

i−1∑
j=1

(wieit) (wjejt) . (9)

where wi, for i = 1, 2, ..., n are independently drawn from a Rademacher distribution of which

the probability mass function is

f (wi) =

1
2
, if wi = −1

1
2
, if wi = 1.

Because of the random properties of the weights, JR show that CDW converges to a standard

normal distribution regardless of the values of ẽit,T , and as a result the over-rejection problem

of standard CD test is avoided if CDW statistic is used instead, but as recognized by JR, this

is achieved at the expense of power. To overcome this limitation, JR construct another power

enhanced test statistic by following Fan et al. (2015), and add the screening component, ∆nT ,

5This condition ensures that 1/σ̂2
i,T < K <∞, which is assumed throughout.

6The CDW statistic can also be computed using the scaled residuals, ẽit,T . The test outcomes do not seem
to be much affected by whether scaled or unscaled residuals are used. Here we follow JR and define CDW in
terms of unscaled residuals.
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to CDW , to obtain CDW+ defined by

CDW+ = CDW + ∆nT , (10)

where

∆nT =
n∑
i=2

i−1∑
j=1

|ρ̂ij,T |1
(
|ρ̂ij,T | > 2

√
ln(n)/T

)
. (11)

For the CDW+ test to have the correct size under H0 : ρij = 0, for all i 6= j, the screening

component ∆nT must converge to zero as n and T → ∞, jointly. To our knowledge, the

conditions under which this holds are not investigated by JR. Whilst it is beyond the scope of

the present paper to investigate the limiting properties of ∆nT in the case of a general factor

model, using results presented in Bailey et al. (2019) (BPS), we will provide sufficient conditions

for ∆nT →p 0 in the case of the simple model yit = µi+σiεit. By the Cauchy-Schwarz inequality

we first note that for all i 6= j,

E

[
|ρ̂ij,T | I

(
|ρ̂ij,T | > 2

√
ln (n)

T

)
|ρij = 0

]

≤
[
E
(
|ρ̂ij,T |2 |ρij = 0

)]1/2
P

(
|ρ̂ij,T | > 2

√
ln (n)

T
|ρij = 0

)
,

where ρij = E (εitεjt). Then

E (∆nT |ρij = 0, for all i 6= j)

≤ n2

2
sup
i 6=j

E
[
|ρ̂ij,T |2 |ρij = 0

]
× sup

i 6=j
P

[
|ρ̂ij,T | > 2

√
ln (n)

T
|ρij = 0

]
. (12)

Now using results (9) and (10) of BPS, we have

E
[
|ρ̂ij,T |2 |ρij = 0

]
= O

(
1

T

)
(13)

and using result (A.4) in the online supplement of BPS, we also have

sup
i 6=j

P

[
|ρ̂ij,T | >

Cp (n, δ)√
T
|ρij = 0

]
= O

(
e−

1
2

C2
p(n,δ)

ϕmax

)
+O

(
T−

(s−1)
2

)
where Cp (n, δ) = Φ−1

(
1− p

2nδ

)
, 0 < p < 1, Φ−1 (·) is the inverse of the cumulative distri-

bution of a standard normal variable, δ > 0, ϕmax = supi 6=j E
(
ε2
itε

2
jt

)
, and s is such that

supi 6=j E |εit|
2s < K, for some integer s ≥ 3 (see Assumption 2 of BPS). Also using results in
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Lemma 2 of the online supplement of BPS, we have

lim
n→∞

C2
p (n, δ)

ln (n)
= 2δ, and e

− 1
2C

2
p(n,δ)

ϕmax = O
(
n−δ/ϕmax

)
.

Therefore, Cp(n,δ)√
T

and 2
√

ln(n)
T

have the same limiting properties if we set δ = 2. Overall, it

then follows that

sup
i 6=j

P

(
|ρ̂ij,T | > 2

√
ln (n)

T
|ρij = 0

)
= O

(
n−

2
ϕmax

)
+O

(
T−

(s−1)
2

)
. (14)

Using (13) and (14) in (12), we now have

E (∆nT |ρij = 0, for all i 6= j) = O

(
n2− 2

ϕmax

√
T

)
+O

(
n2T−s/2

)
(15)

Therefore, ∆nT →p 0, if n2T−s/2 → 0 and T−1/2n2(1− 1
ϕmax

) → 0. It is easily seen that both of

these conditions will be met as n and T → ∞ if εit is Gaussian, since under Gaussian errors,

ϕmax = 1 and s can be taken to be sufficiently large. But, in general the expansion rate of T

relative to n required to ensure ∆nT →p 0 will also depend on the degree to which E
(
ε2
itε

2
jt

)
exceed unity. For example, if εit has a multivariate-t distribution with v > 4 degrees of freedom,

letting T = nd, d > 0, and using results in Lemma 5 of BPS’s online supplement, we have

ϕmax = sup
i 6=j

E
(
ε2
itε

2
jt|ρij = 0

)
=
v − 2

v − 4
.

Hence, E (∆nT |ρij = 0, for all i 6= j) defined by (15) tends to 0 if n2(1− v−4
v−2)−d/2 → 0, or if

d > 8
v−2

. Assumption 1 of JR requires E |εit|8+ε < K, for some small positive ε, and for this to

be satisfied in the case of t-distributed errors we need v > 9, which yields d > 1 when v = 10,

requiring T to rise faster than n.7

Finally, for the CDW+ test to have power it is also necessary to show that ∆nT diverges

in n and T sufficiently fast under alternative hypotheses of interest, namely spatial or network

dependence. Later in the paper, we provide some Monte Carlo evidence on this issue, which

indicates ∆nT need not diverge sufficiently fast and can cause the CDW+ test to suffer from low

power against spatial or network alternatives. Our Monte Carlo experiments also show that

the issue of over-rejection of CDW+ when n >> T prevails when the errors are chi-squared

distributed and the moment condition in Assumption 1 of JR is met.

7We are grateful to JR who draw our attention to the moment requirement of their Assumption 1.
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2.3 The bias-corrected CD test

As shown by JR, the main reason for the failure of the standard CD test in the case of the

latent factor models lies in the fact that both the factors and their loadings are unobserved and

need to be estimated, for example by PCA as in (5). Essentially the differences between γ̂
′

if̂t

and γ
′
ift do not tend to zero at a sufficiently fast rate for the CD test to be valid, unless the

latent factors are weak, namely unless α = maxj(αj) < 1/2. Since the errors from estimation of

γ
′
ift are included in the residuals eit, the resultant CD statistic tends to over-state the degree of

underlying error cross-sectional dependence. This problem also arises when the latent factors

are proxied by cross section averages, as is the case when panel data models are estimated

using correlated common effect (CCE) estimators proposed by Pesaran (2006), which we shall

address below in Section 3.

We propose a bias-corrected CD test statistic, which we denote by CD∗, that directly corrects

the asymptotic bias of the CD test using the estimates of the factor loadings and error variances.

To obtain the expression for the bias we first write the CD statistic, defined by (7), equivalently

as (established in Lemma S.8 of the online supplement)

CD =

(√
n

n− 1

)
1√
T

T∑
t=1


(

1√
n

∑n
i=1

eit
σ̂i,T

)2

− 1
√

2

 . (16)

We also introduce the following analogue of CD

C̃D =

(√
n

n− 1

)
1√
T

T∑
t=1


(

1√
n

∑n
i=1

eit
ωi,T

)2

− 1
√

2

 , (17)

where ω2
i,T = T−1u

′
iMFui, with the following key results (established in Lemmas S.2 and S.9

in the online supplement):

σ̂2
i,T = ω2

i,T +Op

(
1

n

)
+Op

(
1

T

)
,

and

CD − C̃D = op(1). (18)

By scaling the residuals by ωi,T instead of σ̂i,T we are able to establish a faster rate of conver-

gence which in turn allows us to derive an expression for the asymptotic bias of CD statistic,

considering that C̃D and CD are asymptotically equivalent.

Now to analyze the asymptotic properties of C̃D, let δi,T = γi/ωi,T and δ̂i,T = γ̂i/ωi,T , and
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note that
1√
n

n∑
i=1

eit
ωi,T

= ψt,nT − st,nT (19)

where

ψt,nT =
1√
n

n∑
i=1

ai,nT ζit,T , ai,nT = 1− ωi,Tϕ′nTγi, (20)

st,nT =
1√
n

n∑
i=1

[
ϕ′nT (γ̂i − γi)uit +

(
δ̂i,T − δi,T

)′
f̂t +ϕ′nT (γ̂i − γi)γ ′ift

]
, (21)

with ϕnT = n−1
∑n

i=1 δi,T . Using the above results, the C̃D statistic defined in (17) can then

be decomposed as

C̃D =

(√
n

n− 1

)
1√
T

T∑
t=1

(ψt,nT − st,nT )2 − 1√
2

=

(√
n

n− 1

)
1√
T

T∑
t=1

(
ψ2
t,nT + s2

t,nT − 2ψt,nT st,nT
)
− 1

√
2

=

(√
n

n− 1

)[
1√
T

T∑
t=1

(
ψ2
t,nT − 1
√

2

)
+

1√
2

(
T−1/2

T∑
t=1

s2
t,nT

)
−
√

2

(
T−1/2

T∑
t=1

ψt,nT st,nT

)]
.

Under Assumptions 1-3 the last two terms of C̃D are shown in Lemma S.4 of the online

supplement to be asymptotically negligible, in the sense that they tend to zero in probability

as (n, T ) → ∞, so long as n/T → κ, and 0 < κ < ∞. Hence, C̃D = znT + op(1), where

znT = T−1/2
∑T

t=1

(
ψ2
t,nT−1
√

2

)
. Also, using (18) we have CD = znT + op(1). Furthermore, as

established in proof of Theorem 1, we have

znT =
1√
T

T∑
t=1

(
ξ2
t,n − 1
√

2

)
+ op (1) ,

where

ξt,n =
1√
n

n∑
i=1

ai,nεit, ai,n = 1− σiϕ′nγi, (22)

ϕn = 1
n

∑n
i=1 δi, and δi = γi/σi. Since ai,n are given constants, then E (ξt,n) = 0,

E
(
ξ2
t,n

)
≡ ω2

n =
1

n

n∑
i=1

a2
i,n = n−1

n∑
i=1

(1− σiϕ′nγi)
2
, (23)
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and

V ar
(
ξ2
t,n

)
= 2

(
1

n

n∑
i=1

a2
i,n

)2

− κ2

(
1

n2

n∑
i=1

a4
i,n

)
, (24)

where κ2 = E (ε4
it)− 3. Clearly, when the errors are Gaussian then E (ε4

it) = 3, the second term

of V ar
(
ξ2
t,n

)
defined by (24) is exactly zero. But even for non-Gaussain errors the second term

of V ar
(
ξ2
t,n

)
is negligible when n is sufficiently large. To see this note that

1

n2

n∑
i=1

a4
i,n =

1

n2

n∑
i=1

(1− σiϕ′nγi)4 ≤ K

n
,

where K is a positive constant irrespective of whether the underlying factor(s) are strong or

weak. Then we can also compute the mean and the variance of znT as

E (znT ) =
1√
T

T∑
t=1

(
ω2
n − 1√

2

)
=

√
T

2

(
ω2
n − 1

)
,

V ar (znT ) =
1

T

T∑
t=1

V ar

(
ξ2
t,n√
2

)
=
V ar

(
ξ2
t,n

)
2

.

The above expressions for E (znT ) give the source of the asymptotic bias of CD as E (znT ) rises

with
√
T , unless

limn→∞ω
2
n = limn→∞n

−1

n∑
i=1

(1− σiϕ′nγi)
2

= 1.

A bias-corrected version of CD can be defined by

CD∗(θn) =
CD +

√
T
2
θn

1− θn
, (25)

where

θn = 1− 1

n

n∑
i=1

a2
i,n, (26)

with ai,n defined by (22). The above results are summarized in the following theorem.

Theorem 1 Consider the model in (1) and assume the factor number m0 is known. Also

suppose Assumptions 1-3 hold. (a) Under the null hypothesis of cross-sectional independence

as (n, T )→∞, such that n/T → κ, and 0 < κ <∞, CD∗(θn) defined by (25) has the limiting

N(0, 1) distribution. (b) θn = 	 (nα−1), where θn is defined by (26), and α = maxj=1,2,...,m0(αj),

with αj representing the strength of the latent factor, fjt, defined by (4).

Remark 4 Part (b) of the above theorem establishes that the relationship between CD and

CD∗ (θn) is essentially controlled by the maximum factor strength α. Also the main difference
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between CD and CD∗(θn) relates to the correction in the numerator of (25), the order of which

is given by √
Tθn = O

(
T 1/2nα−1

)
.

Suppose now T = 	
(
nd
)

for some d > 0, then
√
Tθn = 	

(
nd/2nα−1

)
= 	

(
Tα+d/2−1

)
, and the

bias correction becomes negligible if α < 1− d/2. Under the required relative expansion rates of

n and T entertained in this paper, we need to set d = 1, and for this choice the bias correction

term,
√
Tθn, becomes negligible if α < 1/2, namely if all latent factors are weak. This result

also establishes that the standard CD test is still valid if all the latent factors are weak, namely

α < 1/2, which confirms an earlier finding of Pesaran (2015a) regarding the implicit null of the

standard CD test when d = 1.

The bias-corrected test statistic, CD∗(θn), depends on the unknown parameter, θn, which

can be estimated by

θ̂nT = 1− 1

n

n∑
i=1

â2
i,nT (27)

where

âi,nT = 1− σ̂i,T (ϕ̂′nT γ̂i) , ϕ̂nT =
1

n

n∑
i=1

δ̂i,nT , (28)

and δ̂i,nT = γ̂i/σ̂i,T . The following corollary establishes the probability order of the difference

between θ̂nT and θn.

Corollary 1 Consider the bias correction term θn in the CD∗ statistic given by (26) and its

estimator θ̂nT given by (27). Suppose Assumptions 1-3 hold. Then for (n, T ) → ∞, such that

n/T → κ, where 0 < κ <∞, we have

√
T
(
θ̂nT − θn

)
= op(1). (29)

It then readily follows that CD∗
(
θ̂nT

)
= CD∗(θn) + op(1), where

CD∗
(
θ̂nT

)
=. CD

∗ =
CD +

√
T
2
θ̂nT

1− θ̂nT
. (30)

We refer to CD∗
(
θ̂nT

)
, or CD∗ for short, as the bias-corrected CD statistic, and the test based

on it as the CD∗ test. The main result of the paper for pure latent factor models is summarized

in the following theorem.

Theorem 2 Under Assumptions 1-3, CD∗ defined by (30) has the limiting N(0, 1) distribution.

as (n, T )→∞, such that n/T → κ, and 0 < κ <∞.
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Remark 5 Estimation of θ̂nT requires the investigator to decide on the number of latent factors,

say m̂, when computing the CD∗ statistic. Suppose that m0 denotes the number of strong

factors. Then if m̂ > m0, the additional assumed number of factors, m̂ − m0, must be weak

by construction and the CD∗ →d N(0, 1) under the null hypothesis. Therefore, to control the

size of the CD∗ test the number of factors assumed when estimating θ̂nT should be set to ensure

that m̂ ≥ m0. There is no need to have a precise estimate of m0 which is often unattainable

especially when some of the latent factors are semi-strong. In practice the assumed number of

factors can be increased to ensure that CD∗ test does not result in spurious rejection.

Remark 6 Despite the robustness of CD∗ test to the choice of m̂, so long as m̂ ≥ m0, it

cannot be used to test if the number of latent factor selected is correct. This is because it

cannot distinguish whether the cross-sectional dependence is caused by the missing latent factors

or other forms of cross-sectional dependence such as spatial error correlations. Our analysis

does not contribute to the problem of estimating m0 addressed in the literature either based on

information criterion of Bai and Ng (2002) or eigenvalue ratio test of Ahn and Horenstein

(2013).

3 Tests of error cross-sectional dependence for a panel

data model with latent factors

Consider now the following general panel regression model that explains the scalar variables

yit, for i = 1, 2, ..., n; and t = 1, 2, ..., T , in terms of observed and latent covariates:

yit = α′idt + β′ixit + vit, vit = γ ′ift + uit, (31)

where dt is a kd×1 vector of observed common factors which can be either constant or covariance

stationary, xit is a kx × 1 vector of unit-specific regressors, and ft = (f1t, f2t, ..., fm0t)
′ is an

m0 × 1 vector of unobserved factors. αi = (αi1, αi2, ..., αikd)
′, βi = (βi1, βi2, ..., βikx)

′ and

γi = (γi1, γi2, ..., γim0)
′ are the associated vector of unknown coefficients. uit is the idiosyncratic

error for unit i at time t, and its cross-sectional dependence property is the primary object of

interest.

To test the cross-sectional independence of error term in a mixed factor model as (31), we

need to estimate coefficients (αi,βi). When the regressor xit is independent from both factor

structure and error term, a simple least squares regression of yit on (1,xit) for each i would be

sufficient. However, in a more general scenario, xit can be correlated with factor structure. To

study this scenario, we adopt the large heterogeneous panel data models discussed in Pesaran
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(2006), so that the time varying regressor xit is assumed to be generated as

xit = A
′

idt + Γ
′

ift + εxit

where Ai and Γi are kd × kx and m0 × kx factor loading matrices and εxit are the specific

components of xit, distributed independently of the common effects and across i, but assumed

to follow general covariance stationary process. Then in addition to Assumptions 1-3, we make

the following assumptions:

Assumption 4 (a) The kd × 1 vector dt is a covariance stationary process, with absolute

summable autocovariance and dt is distributed independently of ft′ , for all t and t
′
, such that

T−1D
′
F = Op

(
T−1/2

)
, where D = (d1,d2, . . . ,dT )

′
and F = (f1, f2, . . . , fT )

′
are matrices of

observations on dt and ft. (b) (dt, ft) is distributed independently of uis and εxis for all i, t, s.

Assumption 5 The unobserved factor loadings Γi are bounded, i.e. ‖Γi ‖2 < K for all i.

Assumption 6 The individual-specific errors uit and εxjs are distributed independently for all

i, j, t and s, and for each i, εxjs follows a linear stationary process with absolute summable

autocovariances given by

εxit =
∞∑
l=0

Silηxit−l

where for each i, ηxit is a kx×1 vector of serially uncorrelated random variables with mean zero,

the variance matrix Ikx, and finite fourth-order cumulants. For each i, the coefficient matrices

Sil satisfy the condition

V ar (εxit) =
∞∑
l=0

SilS
′

il = Σxi

where Σxi is a positive definite matrix, such that supi ||Σxi||2 < K.

Assumption 7 Let Γ̃ = E (γi,Γi) . We assume that Rank
(
Γ̃
)

= m0.

Assumption 8 Consider the cross section averages of the individual-specific variables, zit =(
yit,x

′
it

)′
defined by z̄t = n−1

∑n
i=1 zit, and let M̄ = IT − H̄

(
H̄
′
H̄
)−1

H̄
′
, and Mg = IT −

G
(
G
′
G
)−1

G
′
, where H̄ =

(
D, Z̄

)
, G = (D,F) , and Z̄ = (z̄1, z̄2, . . . , z̄T ) is the T × (kx + 1)

matrix of observations on the cross-sectional averages. Let Xi = (xi1,xi2, ...,xiT )′, then the

k × k matrices Ψ̂i,T = T−1X
′
iM̄Xi and Ψig = T−1X

′
iMgXi are non-singular, and Ψ̂−1

i,T and

Ψ−1
ig have finite second-order moments for all i.

Remark 7 The above assumptions are standard in the panel data models with multi-factor

error structure. See, for example, Pesaran (2006). But in our setup under Assumption 1 we

require the error term, uit, to be serially uncorrelated, since our focus is on testing uit for
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cross-sectional dependence, and this assumption is needed for asymptotic normality of the bias-

corrected CD test. Nevertheless, we allow εxit, the errors in the xit equations to be serially

correlated. Assumption 4 separates the observed and the latent factors, as in Assumption 11

of Pesaran and Tosetti (2011). This assumption is required to obtain the probability order of

estimated residuals needed for computation of CD∗ statistic.

To estimate vit we first filter out the effects of observed covariates using the CCE estimators

proposed Pesaran (2006), namely for each i we estimate βi by

β̂CCE,i =
(
X
′

iM̄Xi

)−1 (
X
′

iM̄yi

)
,

and following Pesaran and Tosetti (2011), estimate αi by

α̂CCE,i =
(
D
′
D
)−1

D
′
(
yi −Xiβ̂CCE,i

)
.

Then we have the following estimator of vit

v̂it = yit − α̂
′

CCE,idt − β̂
′

CCE,ixit.

Using results in Pesaran and Tosetti (2011) (p. 189) it follows that under Assumptions 1-8

v̂it = vit +Op

(
1

n

)
+Op

(
1√
T

)
+Op

(
1√
nT

)
.

Note when αi = 0 and βi = 0, (31) reduces the the pure latent factor model, (1), where

PCA can be applied to vit directly. In the case of panel regressions v̂it can be used instead of

vit to compute the bias-corrected CD statistic given by (30). The errors involved will become

asymptotically negligible in view of the fast rate of convergence of v̂it to vit, uniformly for each

i and t. Specifically, as in the case of the pure latent factor model, we first compute m0 PCs

of {v̂it; i = 1, . . . , n; and t = 1, . . . , T} and the associated factor loadings, (γ̂i, f̂t), subject to

the normalization n−1
∑n

i=1 γ̂iγ̂
′

i = Im0 . The residuals eit = v̂it − γ̂
′

if̂t, for i = 1, . . . , n and

t = 1, . . . , T are then used to compute the standard CD statistic, which is then bias-corrected

as before using (30).

Theorem 3 Consider the panel data model (31) and suppose the true factor number m0 is

known. Also suppose Assumptions 1-8 hold. Then as (n, T ) → ∞, such that n/T → κ, where

0 < κ <∞, CD∗ has the limiting N(0, 1) distribution.

Remark 8 As in the case of the pure latent factor model the CD∗ test will be valid so long as

the number of estimated factors is at least as large of m0.
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4 Small sample properties of CD∗ and CDW+ tests

4.1 Data generating process

We consider the following data generating process

yit = ai + σi

(
βi1dt + βi2xit +m

−1/2
0 γ ′ift + εit

)
, i = 1, 2, ..., n; t = 1, 2, ..., T, (32)

where ai is a unit-specific effect, dt is the observed common factor, xit is the observed regressor

that varies across i and t, ft is the m0 × 1 vector of unobserved factors, γi is the vector of

associated factor loadings, and εit are the idiosyncratic errors. The scalar constants, σi > 0,

are generated as σ2
i = 0.5 + 1

2
s2
i , with s2

i ∼ IIDχ2(2), which ensures that E(σ2
i ) = 1.

4.1.1 DGP under the null hypothesis

Under the null hypothesis the errors εit are generated as IID(0, 1), we consider both Gaussian

and non-Gaussian distributions for εit:

• Gaussian errors: εit ∼ IIDN(0, 1),

• Chi-squared distributed errors: εit ∼ IID
(
χ2(2)−2

2

)
.

The focus of the experiments is on testing the null hypothesis that εit are IID, whilst

allowing for the presence of m0 unobserved factors, ft = (f1t, f2t, ..., fm0t)
′. We consider m0 = 1

and m0 = 2, and generate the factor loadings γi = (γi1, γi2)′ as:

γi1 ∼ IIDN (0.5, 0.5) for i = 1, 2, . . . , [nα1 ] ,

γi2 ∼ IIDN (1, 1) for i = 1, 2, . . . , [nα2 ] ,

γij = 0 for i = [nαj ] + 1, [nαj ] + 2, ...., n, and j = 1, 2.

In the one-factor case (m0 = 1), we only include f1t as the latent factor and denote its factor

strength by α. Three values of α are considered, namely α = 1, 2/3, 1/2, respectively repre-

senting strong, semi-strong and weak factor. Similarly, in the two-factor case (m0 = 2), we

include both f1t and f2t as the latent factors and consider the following combinations of factor

strengths.

(α1, α2) = [(1, 1), (1, 2/3), (2/3, 1/2)] .

The intercepts ai are generated as IIDN(1, 2) and fixed thereafter. The observed common

factor is generated as an AR(1) process:

dt = ρddt−1 +
√

1− ρ2
dvdt,
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with ρd = 0.8, and vdt ∼ IIDN(0, 1), thus ensuring that E(dt) = 0 and V ar(dt) = 1. The

observed unit-specific regressors, xit, for i = 1, 2, .., n are generated to have non-zero correlations

with the unobserved factors:

xit = γxi1f1t + γxi2f2t + exit, (33)

where

fjt = rjfj,t−1 +
√

1− r2
jvjt,

rj = 0.9 and vjt ∼ IID
(
χ2(2)−2

2

)
, for j = 1, 2. The factor loadings in (33) are generated as

γxi1 ∼ IIDU (0.25, 0.75) and γxi2 ∼ IIDU (0.1, 0.5). The error term of (33) is generated as a

stationary process:

exit = ρiexi,t−1 +
√

1− ρ2
i vxit, i = 1, 2 . . . , n,

where ρi ∼ IIDU(0, 0.95) and vxit ∼ IIDN(0, 1).

We will examine the small sample properties of the CD and the bias-corrected CD tests

for both the pure latent factor model and for the panel regression model which also includes

observed covariates.

• In the case of the pure latent factor model we set βi1 = βi2 = 0

• In the case of panel regression model with latent factors, we allow for heterogeneous slopes

and generate the slopes of observed covariates, dt and xit, as βi1 ∼ IIDN(µβ1, σ
2
β1), and

βi2 ∼ IIDN(µβ2, σ
2
β2) where µβ1 = µβ2 = 0.5 and σ2

β1 = σ2
β2 = 0.25, respectively.

As our theoretical results show the null distribution of the CD and bias-corrected CD tests

do not depend on ai, βi1 and βi2, it is therefore innocuous what values are chosen for these

parameters. Moreover, the average fit of the panel is controlled in terms of the limiting value

of the pooled R-squared defined by

PR2
nT = 1− (nT )−1

∑n
i=1

∑T
t=1 σ

2
iE (ε2

it)

(nT )−1
∑n

i=1

∑T
t=1 V ar (yit)

. (34)

Since the underlying processes, (32) and (33), are stationary and E (ε2
it) = 1, we have

limT→∞PR
2
nT = PR2

n =
n−1

∑n
i=1 σ

2
i

[
β2
i1 + β2

i2V ar (xit) +m−1
0 γ

′
iγi + 2Cov

(
xit,γ

′
ift
)]

n−1
∑n

i=1 V ar (yit)
.

where γi = (γi1, γi2)′ , V ar (xit) = γ
′
xiγxi + 1, Cov

(
xit,γ

′
ift
)

= γ
′
xiγi, γxi = (γxi1, γxi2)′, and

V ar (yit) = σ2
i

[
β2
i1 + β2

i2V ar (xit) +m−1
0 γ

′
iγi + 2m

−1/2
0 Cov

(
xit,γ

′

ift

)
+ 1
]
.

Also since σ2
i and βij are independently distributed and E(σ2

i ) = 1, it then readily follows that
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limn→∞PR
2
n = η2/(1 + η2), where

η2 = µ2
β1 + σ2

β1 +
(
µ2
β2 + σ2

β2

) [
1 + E

(
γ
′

xiγxi

)]
+

2µβ2E
(
γ
′
xiγi

)
√
m0

+
E
(
γ
′
iγi
)

m0

.

By controlling the value of η2 across the experiments we ensure that the pooled R2 in large

samples will be fixed, regardless of value of σi. In particular, in the case of the pure latent

model, we have η2 = m−1
0 E

(
γ
′
iγi
)

= O (nα−1) where α = max(α1, α2).

4.1.2 DGP under the alternative hypothesis

We consider a spatial alternative representation for errors, and generate ε◦t = (ε1t, ε2t, ..., εnt)
′

according to the following first order spatial autoregressive process:

ε◦t = c (In − ρW )−1 ζ◦t,

where W = (wij), and ζ◦t = (ζ1t, ζ2t, . . . , ζnt)
′. Similarly to the DGP under the null hypothesis,

for the errors, ζit, we consider both Gaussian and non-Gaussian distributions, namely ζit ∼
IIDN (0, 1) and ζit ∼ IID[χ

2(2)−2
2

]. For the spatial weights wij, we first set w0
ij = 1 if j =

i − 2, i − 1, i + 1, i + 2, and zero otherwise. We then row normalize the weights such that

wij =
(∑n

j=1w
0
ij

)−1

w0
ij. We also set

c2 =
n

tr
[
(In − ρW )−1 (In − ρW )′−1] ,

which ensures that n−1
∑n

i=1 V ar(εit) = 1, irrespective of the choice of ρ.

4.2 CD, CD∗ and CDW+ tests

All experiments are carried out for n = 100, 200, 500, 1000 and T = 100, 200, 500 and the

number of replications is set to 2, 000. For the pure latent factor models, we compute the

filtered residuals as v̂it = yit− âi, where âi = T−1
∑T

t=1 yit. For the panel regressions with latent

factors, the filtered residuals are computed as

v̂it = yit − âCCE,i − β̂CCE,i1dt − β̂CCE,i2xit, (35)

where
(

âCCE,i, β̂CCE,i1, β̂CCE,i2

)
is the CCE estimator of ai, βi1 and βi2, as set out in Pesaran

(2006). The CCE estimators are consistent so long as the relevant rank condition is met, which

requires thatm0 ≤ 1+k = 2, which is satisfied in the case of our Monte Carlo experiments. Then

we will compute the first m PCs {v̂it; i = 1, 2, . . . , n; and t = 1, 2, . . . , T} and the associated

factor loadings, namely (γ̂i, f̂t), subject to the normalization, n−1
∑n

i=1 γ̂iγ̂
′
i = Im. Finally the
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residuals, to be used in the computation of CD test statistics, are computed as eit = v̂it− γ̂if̂t,
for i = 1, 2, . . . , n and t = 1, 2, . . . , T .

In practice, the true number of factors m0 is not known and in carrying the various CD

tests we need to set m such that m ≥ m0. To that end, in addition to reporting the results

with m = m0, we also consider m = 2 for one-factor specification and m = 4 for the two-factor

specification. JR apply a similar procedure to obtain v̂it as shown in (35), but they differ from

us in computing the residual eit as the latent factors are estimated by cross-sectional averages.

4.3 Simulation results

4.3.1 Gaussian errors

We first report the simulation results for the DGPs with normally distributed errors, under

which the correction term of JR test, namely ∆nT in (10), tends to zero sufficiently fast and

our Assumption 3 is met. Next, we report simulation results for the DGPs with chi-squared

distributed errors, where the errors do not satisfy the symmetry requirement of Assumption 3,

and also allows us to investigate the robustness of the JR test and our proposed bias-corrected

CD test to departures from Gaussianity. We consider spatial alternatives such that the size

is examined by setting the spatial coefficient ρ = 0, and report power for ρ = 0.25. As to be

expected power rises with ρ and additional simulation results for values of ρ > 0.25 do not seem

to add much to our investigation.

The simulation results for the DGPs with the errors following standard normal distribution

are shown in Table 1-4. Table 1 reports the test results for the pure single factor models.

The top panel gives the results for the case where the number of selected PCs, denoted by

m, is the same as the true number of factors, m0, while the bottom panel reports the results

when m = 2. As to be expected the standard CD test over-rejects when the factor is strong,

namely when a = 1. By comparison, the rejection frequencies of both CD∗ and CDW+ tests

under null (ρ = 0) are generally around the nominal size of 5 per cent. Under the alternative

(when ρ = 0.25), the CD∗ has satisfactory power properties with significantly high rejection

frequencies even when the sample size is small. But CDW+ test performs quite poorly under

spatial alternatives, especially when T is small.

Table 2 summarizes the size and power results for the pure factor model with m0 = 2, and

reports the results when m (the selected number PCs) is set to 2 (the top panel) and 4 (the

bottom panel). The results are qualitatively similar to the ones reported for the single factor

model. The CD test over-rejects if at least one of the factors is strong, and the empirical sizes

of CD∗ and CDW+ tests are close to their nominal value of 5 per cent, although we now observe

some mild over-rejection when n = 100 and the selected number of PCs is 4. In terms of power,

the CD∗ performs well, although there is some loss of efficiency as the number of factors and
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selected PCs rise. Similarly, the power of the CDW+ test is now even lower and quite close to

5 per cent when T < 500 even if the number of PCs is set to m0 = 2.

Turning to panel regressions with latent factors estimated by CCE, the associated simulation

results are summarized in Tables 3 and 4, As can be seen, the results are very close to the ones

reported in Tables 1 and 2 for the pure factor model, and are in line with our asymptotic results.

4.3.2 Chi-squared distributed errors

The simulation results for the DGPs with chi-squared errors are provided in Tables 5 to 8. For

standard CD test and its biased-corrected version, CD∗, the results are very similar to the

ones with Gaussian errors, suggesting that CD∗ test is robust to the symmetry assumption

that underlie our theoretical derivations. As with the experiments with Gaussian errors, the

standard CD test continues to over-reject unless α < 2/3, and CD∗ has the correct size for all

n and T combinations, except when the number of selected PCs is large relative to m0, and

T = 100. The main difference between the results with and without Gaussian errors is the

tendency for the CDW+ test to over-reject when n > T , which seems to be a universal feature

of this test and holds for all choices of m0 and the number of selected PCs; and irrespective of

whether the factors are strong or weak. As we discussed in Section 2.2, this could be due to the

screening component of CDW+ not tending to zero sufficiently fast with n and T . Furthermore,

the CD∗ test continues to have satisfactory power, but CDW+ clearly lacks power against

spatial or network alternatives that are of primarily interest.

Similar results are obtained for panel regressions with latent factors, summarized in Tables

7 and 8.

5 Empirical illustrations

5.1 Are there spill-over effects in house price changes?

In our first illustration of the use of CD tests we consider the problem of spillover effects in

regional house price changes. It is well known that house price changes are spatially correlated,

but it is unclear if such correlations are mainly due to common factors (national or regional)

or arise from spatial spillover effects not related to the common factors, a phenomenon also

referred to as the ripple effect. See, for example, Tsai (2015), Chiang and Tsai (2016), Holly

et al. (2011), and Bailey et al. (2016). To test for the presence of ripple effects the influence

of common factors must first be filtered out and this is often a challenging exercise due to the

latent nature of regional and national factors. Therefore, to find if there exist local spillover

effects, one needs to test for significant residual cross-sectional dependence once the effects of

common factors are filtered out.
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We consider quarterly data on real house prices in the U.S. at the metropolitan statistical

areas (MSAs). There are 381 MSAs, under the February 2013 definition provided by the U.S.

Office of Management and Budget (OMB). We use quarterly data on real house price changes

compiled by Yang (2021) which covers n = 377 MSAs from the contiguous United States over the

period 1975Q2-2014Q4 (T = 160 quarters). To allow for possible regional factors, we also follow

Bailey et al. (2016) and start with the Bureau of Economic Analysis eight regional classification,

namely New England, Mideast, Great Lakes, Plains, Southeast, Southwest, Rocky Mountain

and Far West. But due to the low number of MSAs in New England and Rocky Mountain

regions, we combine New England and Mideast, and Southwest and Rocky Mountain as two

regions. We end up with a six region classification (R = 6), each covering a reasonable number

of MSAs.

Initially, we model house price changes without regional groupings and consider the pure

latent factor model with deterministic seasonal dummies to allow for seasonal movements in

house prices. Specifically, we suppose

πit = ai +
3∑
j=1

βijl {qt = j}+ γ ′ift + uit,

where πit is real house price in MSA i at time t, and l{qt = j} is the index for quarter j, and ft

is the m× 1 vector of latent factors. To filter out the seasonal effects we first estimate ai and

βij by running OLS regression of πit on an intercept and the three seasonal dummies. This is

justified since seasonal dummies are independently distributed of the latent factors. We then

apply the PCA to {v̂it : i = 1, 2, . . . , n, t = 1, 2, . . . , T}, where v̂it = πit− âi−
∑3

j=1 β̂ijl{qt = j} ,
to obtain the estimates γ̂i and f̂t for different choices of m (selected number of PCs).8 Then the

standard CD, its bias-corrected version, CD∗, and the CDW+ test of JR are computed using

the de-seasonalized and de-factored series given by

eit = πit − âi −
3∑
j=1

β̂ijl {qt = j} − γ̂ ′if̂t. (36)

The CD statistics are reported in the panel (a) of Table 9 for values of m = 1, 2, ..., 6. Generally

all three CD tests reject the null hypothesis of cross-sectional independence irrespective of m,

with exception of the standard CD test when m = 5. It can also be observed that CD is always

less than CD∗, indicating CD is negatively biased.

Bailey et al. (2016) also find evidence of regional factors in U.S. house price changes which

might not be picked up when using PCA. As a robustness check, we also consider an extended

8âi and β̂ij are estimated by OLS regression of πit on the intercept and seasonal dummies, that are indepen-
dent of the latent factors.

29



factor model containing observed regional and national factors, as well as latent factors:

πirt = air +
3∑
j=1

βir,jl {qt = j}+ δir,1π̄rt + δir,2π̄t + γ
′

irft + uirt,

where πirt is the real house price changes in MSA i located in region r = 1, 2, ..., 6. π̄rt =

n−1
r

∑nr
i=1 πirt and π̄t = n−1

∑R
r=1

∑nr
i=1 πirt are proxies for the regional and national factors.

To filter out the effects of seasonal dummies as well as observed factors, we first run the least

squares regression of πirt on an intercept and (l {qt = j} , π̄rt, π̄t) for each i to generate the

residuals

v̂irt = πirt − âir −
3∑
j=1

β̂ir,jl {qt = j} − δ̂ir,1π̄rt − δ̂ir,2π̄t, (37)

and then apply PCA to {v̂irt : i = 1, . . . , n, r = 1, . . . , R, t = 1, . . . , T} to obtain γ̂ir and f̂t, for

different choice of m, and the residuals

eirt = πirt − âir −
3∑
j=1

β̂ir,jl {qt = j} − δ̂ir,1π̄rt − δ̂ir,2π̄t − γ̂
′

ir f̂t. (38)

The CD, CD∗ and CDW+ test statistics based on these residuals are reported in the panel (b) of

Table 9, again for m = 1, 2, ..., 6. All three CD tests reject the null hypothesis of cross-sectional

independence for all choices of m. CD is still less than CD∗ for each m, but compared to the

model without regional and national effects, now the difference between CD and CD∗ is much

smaller. Intuitively regional and national effects account for some of the latent factors such

that after filtering these effects the cross-sectional dependence in v̂irt of (37) becomes weaker.

Since the bias in CD decreases with the strengths of latent factors that are included in v̂irt, the

standard CD test and the bias-corrected CD test become closer. Overall, the above test results

provide strong evidence that in addition to latent factors, spatial modeling of the type carried

out in Bailey et al. (2016) is likely to be necessary to account for the remaining cross-sectional

dependence.

5.2 Testing error cross-sectional dependence in CCE model of R&D

investment

A number of recent empirical studies of R&D investment using panel data have resorted to

latent factors to take account of knowledge spillover as well as dependencies across industries,

and have applied the CCE approach of Pesaran (2006) to filter out these effects. For instance,

Eberhardt et al. (2013) estimate panel data regressions of 12 manufacturing industries across
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Table 9: Tests of error cross-sectional dependence for real house price changes

Panel (a): Without regional and national factors

Test\m 1 2 3 4 5 6
CD 8.9 15.5 4.7 1.3 0.1 -3.9
CD∗ 108.8 150.9 99.4 93.2 87.1 50.8
CDw+ 2659.2 2456.8 1765.3 1677.5 1547.4 1348.1

Panel (b): With regional and national factors

Test\m 1 2 3 4 5 6
CD 107.9 106.8 112.4 125.0 46.0 42.4
CD∗ 117.9 119.5 122.4 137.0 70.0 67.0
CDw+ 1593.3 1546.8 1441.5 1321.9 1211.2 1150.9

Note: In the first panel the tests are applied to residuals in equation (36) where we de-seasonalize and

de-factor real house price change. In the second panel the tests are applied to residuals in equation (38)

where we not only de-seasonalize and de-factor real house price change but also filter out the regional

and the national effects. CD denotes the standard CD test statistic, CD∗ denotes the bias-corrected

CD test statistic, and CDW+ denotes JR’s power-enhanced randomized CD statistic. The number of

selected PCs is denoted by m.

10 countries9 over the period 1981- 2005, and apply the standard CD test to the residuals

of their regressions to check if the CCE approach has been effective in fully capturing the

error cross-sectional dependence. They find that the CD test rejects the null hypothesis of

error cross-sectional independence. JR revisit Eberhardt et al. (2013) test results using their

randomized CD test CDW+, but again reject the null of error cross-sectional independence.

Here we focus on one of the panel regressions considered by Eberhardt et al. (2013) namely

(see their Table 5)

ln(Yit) = β0 + β1ln(Lit) + β2ln(Kit) + β3ln(Rit) + γ ′ift + uit (39)

where Yit, Lit, and Kit denote production, labor and physical capital inputs, respectively, and

Rit is R&D capital. We estimate the panel regression over a balanced panel and compute the

residuals after the CCE estimation:

v̂it = ln(yit)− β̂CCE,0 − β̂CCE,1ln(Lit)− β̂CCE,2ln(Kit)− β̂CCE,3ln(Rit). (40)

In both Eberhardt et al. (2013) and JR the residuals in (40) are furthermore filtered out by cross-

sectional average of (ln(yit), ln(Lit), ln(Kit), ln(Rit)), and then the tests of error cross-sectional

9The countries include Denmark, Finland, Germany, Italy, Japan, Netherlands, Portugal, Sweden, United
Kingdom, and United States.
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dependence are applied. Here, we apply PCA to residuals {v̂it := i = 1, . . . , n, t = 1, . . . , T}
to get estimates γ̂i and f̂t, because PCA is not only required for construction of CD∗ but also

can present the change of cross-sectional dependence associated with the number of selected

PCs to estimate factors, which is denoted as m. Also, because rank condition is required for

the consistency of CCE estimators, it is implicitly assumed that the number of latent factors in

(39) is not larger than the number of time varying regressors (in the present application 3) plus

one.10 Accordingly, we apply PCA to v̂it, with the number of selected PCs set to m = 1, 2, 3,

and 4. The results are summarized in Table 10. As can be seen, the test outcomes are quite

sensitive to the number of PCs selected. The CD and CD∗ tests reject the null of cross-sectional

independence when m = 3, but not if m = 4. In comparison, the CDW+ test rejects the null

for all values of m.

Table 10: Tests of error cross-sectional dependence for panel regressions of R&D investment

1 2 3 4
CD 0.5 2.1 4.1 -0.8
CD∗ 2.1 3.3 6.3 1.7
CDW+ 38.4 3.9 3.7 8.6

Note: The tests are applied to residuals in equation (40) where we model R&D investment. See also

the notes to Table 9.

6 Concluding remarks

In this paper we have revisited the problem of testing error cross-sectional dependence in panel

data models with latent factors. Starting with a pure multi-factor model we show that the

standard CD test proposed by Pesaran (2004) remains valid if the latent factors are weak,

but over-reject when one or more of the latent factors are strong. The over-rejection of CD

test in the case of strong factors is also established by Juodis and Reese (2021), who propose

a randomized test statistic to correct for over-rejection and add a screening component to

achieve power. However, as we show, JR’s CDW+ test is not guaranteed to have the correct

size and need not be powerful against spatial or network alternatives. Such alternatives are

of particular interest in the analyses of ripple effects in housing markets, and clustering of

firms within industries in capital or arbitrage asset pricing models. In fact, using Monte Carlo

experiments we show that under non-Gaussian errors the JR test continues to over-reject when

10It is worth noting that the CCE estimator continues to be consistent even with failure of rank condition, but
requires additional assumptions such that factor loadings γi in (39) are independently and identically distributed
across i, see Pesaran (2006) and Pesaran (2015b).
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the cross section dimension (n) is larger than the time dimension (T ), and often has power

close to size against spatial alternatives. To overcome some of these shortcomings, we propose

a simple bias-corrected CD test, labelled CD∗, which is shown to be asymptotically N(0, 1)

when n and T tend to infinity such that n/T → κ, for a fixed constant κ. This result holds for

pure latent factor models as well as for panel regressions with latent factors. Our analysis is

confined to static panels and further research is required before the CD∗ can be considered for

dynamic panels with latent factors.

Appendix

This appendix provides the proofs of Theorems 1 to 3, and Corollary 1. The auxiliary

lemmas used in these proofs are stated and established in Section S1 of the online supplement.

Proof of Theorem 1. We first note that the residuals of the factor model (1) estimated using

PCs, given by (5), can be written as:

eit = uit − γ ′i
(
f̂t − ft

)
− (γ̂i − γi)

′ ft − (γ̂i − γi)
′
(
f̂t − ft

)
. (A.1)

Let ζit,T = uit/ωi,T , δi,T = γi/ωi,T , and δ̂i,T = γ̂i/ωi,T , where ω2
i,T = T−1u

′
iMFui, then

eit/ωi,T = ζit,T − δ′i,T
(
f̂t − ft

)
−
(
δ̂i,T − δi,T

)′
ft −

(
δ̂i,T − δi,T

)′ (
f̂t − ft

)
. (A.2)

As shown in Lemma S.1 of the online supplement, and recalling that yjt = γ ′jft = ujt, we have

f̂t − ft = n−1

n∑
j=1

(
γ̂j − γj

)
yjt + n−1

n∑
j=1

γjujt

=

[
n−1

n∑
j=1

(
γ̂j − γj

)
γ ′j

]
ft + n−1

n∑
j=1

(
γ̂j − γj

)
ujt + n−1

n∑
j=1

γjujt.

Using this result in (A.2) we obtain

eit/ωi,T = ζit,T − δ′i,T

(
n−1

n∑
j=1

γjujt

)
− δ′i,T

[
n−1

n∑
j=1

(
γ̂j − γj

)
γ ′j

]
ft − δ′i,T

[
n−1

n∑
j=1

(
γ̂j − γj

)
ujt

]

−
(
δ̂i,T − δi,T

)′
ft −

(
δ̂i,T − δi,T

)′ (
f̂t − ft

)
. (A.3)
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and summing over i we have

n−1/2

n∑
i=1

eit/ωi,T = n−1/2

n∑
i=1

ζit,T −ϕ′nT

(
n−1/2

n∑
i=1

γiuit

)
−ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

]
ft

−ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]
−

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′]
ft

−

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)]′ (
f̂t − ft

)
.

where

ϕnT = n−1

n∑
i=1

δi,T . (A.4)

Written more compactly

ht,nT = n−1/2

n∑
i=1

eit/ωi,T = ψt,nT − st,nT , (A.5)

where

ψt,nT =
1√
n

n∑
i=1

ai,nT ζit,T , ai,nT = 1− ωi,Tϕ′nTγi, (A.6)

st,nT =
1√
n

n∑
i=1

[
ϕ′nT (γ̂i − γi)uit +

(
δ̂i,T − δi,T

)′
f̂t +ϕ′nT (γ̂i − γi)γ ′ift

]
. (A.7)

Further, let

ξt,n =
1√
n

n∑
i=1

ai,nεit, ai,n = 1− σiϕ′nγi. (A.8)

where ϕn = n−1
∑n

i=1 δi, and δi = γi/σi. Then ψt,nT , given by (A.6), can be written as

ψt,nT = ξt,n +
1√
n

n∑
i=1

(1− ωi,Tϕ′nTγi) ζit,T −
1√
n

n∑
i=1

(1− σiϕ′nγi) εit

= ξt,n −
1√
n

n∑
i=1

ωi,Tϕ
′
nTγiζit,T +

1√
n

n∑
i=1

σiϕ
′
nγiεit +

1√
n

n∑
i=1

(ζit,T − εit) ,
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and since ωi,T ζit,T = uit = σiεit, (recall that ζit,T = εit/ (ε′iMFεi/T )1/2) then

ψt,nT = ξt,n +
1√
n

n∑
i=1

(ζit,T − εit)− (ϕnT −ϕn)′
1√
n

n∑
i=1

γiσiεit.

= ξt,n +
1√
n

n∑
i=1

(
1

(ε′iMFεi/T )1/2
− 1

)
εit − (ϕnT −ϕn)′

(
1√
n

n∑
i=1

γiσiεit

)
.

So ψt,nT can also be written equivalently as

ψt,nT = ξt,n + υt,nT − (ϕnT −ϕn)′ κt,n, (A.9)

where

ξt,n =
1√
n

n∑
i=1

ai,nεit, ai,n = 1− σiϕ′nγi, (A.10)

κt,n =
1√
n

n∑
i=1

γiσiεit, (A.11)

υt,nT =
1√
n

n∑
i=1

(
1

(ε′iMFεi/T )1/2
− 1

)
εit. (A.12)

Now recall from (17) that

C̃D =

(√
n

n− 1

)
1√
T

T∑
t=1


(

1√
n

∑n
i=1

eit
ωi,T

)2

− 1
√

2

 .
Then using (A.5), and after some algebra, we have

C̃D =

(√
n

n− 1

)
1√
T

T∑
t=1

(
ψ2
t,nT − 1
√

2

)
+

(√
n

n− 1

)
(pnT − qnT ) ,

where

pnT = T−1/2

T∑
t=1

s2
t,nT , (A.13)

qnT = T−1/2

T∑
t=1

ψt,nT st,nT , (A.14)
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and by Lemma S.4 of the online supplement pnT = op(1), and qnT = op(1). Hence

C̃D =
1√
T

T∑
t=1

(
ψ2
t,nT − 1
√

2

)
+ op(1). (A.15)

Now consider T−1/2
∑T

t=1 ψ
2
t,nT and using (A.9) note that

1√
T

T∑
t=1

ψ2
t,nT =

(
1√
T

T∑
t=1

ξ2
t,n

)(
1 +

2
∑T

t=1 ξt,nυt,nT∑T
t=1 ξ

2
t,n

)
+

1√
T

T∑
t=1

υ2
t,nT

+
√
T (ϕnT −ϕn)′

(∑T
t=1 κt,nκ

′
t,n

T

)
(ϕnT −ϕn)− 2

√
T (ϕnT −ϕn)′

(
1

T

T∑
t=1

κt,nυt,nT

)

− 2
√
T (ϕnT −ϕn)′

(
1

T

T∑
t=1

κt,nξt,n

)
= g1,nT + g2,nT + g3,nT − 2g4,nT − 2g5,nT . (A.16)

Starting with the second term, g2,nT , note that

E (g2,nT ) = E (|g2,nT |) =
1√
T

T∑
t=1

E
(
υ2
t,nT

)
, (A.17)

where υt,nT is defined by (A.12), and we have

E
(
υ2
t,nT

)
=

1

n

n∑
i=1

E

( 1

(ε′iMFεi/T )1/2
− 1

)2

ε2
it

 ,
and hence

E
(
υ2
t,nT

)
=

1

n

n∑
i=1

[
E

(
ε2
it

ε′iMFεi/T

)
− 1

]
− 2

1

n

n∑
i=1

[
E

(
ε2
it

(ε′iMFεi/T )1/2

)
− 1

]

≤ 1

n

n∑
i=1

∣∣∣∣E ( ε2
it

ε′iMFεi/T
−
)∣∣∣∣+ 2

1

n

n∑
i=1

∣∣∣∣∣E
(

ε2
it

(ε′iMFεi/T )1/2
− 1

)
− 1

∣∣∣∣∣ .
Meanwhile using (S.48) and (S.52) in Lemma S.7 of the online supplement, we also have

E

(
ε2
it

ε′iMFεi/T
− 1

)
= O

(
1

T

)
, and E

[
ε2
it

(ε′iMFεi/T )1/2

]
− 1 = O

(
1

T

)
,

and therefore

E
(
υ2
t,nT

)
= O

(
T−1

)
. (A.18)
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Using this result in (A.17) we obtain E (|g2,nT |) = O(T−1/2), which by Markov inequality

establishes that g2,nT = op(1). Consider the three remaining terms, g3,nT , g4,nT and g5,nT of

(A.16), starting with

g3,nT =
1√
T

[
√
T (ϕnT −ϕn)′

(∑T
t=1 κt,nκ

′
t,n

T

)
√
T (ϕnT −ϕn)

]
,

and note that by Lemma S.5 we have

√
T (ϕn −ϕnT ) = Op

(
n−1/2

)
+Op

(
T−1/2

)
. (A.19)

Furthermore

E

∥∥∥∥∥T−1

T∑
t=1

κt,nκ
′
t,n

∥∥∥∥∥ ≤ 1

T

T∑
t=1

E
∥∥κt,nκ′t,n∥∥ =

1

T

T∑
t=1

E ‖κt,n‖2

=
1

T

T∑
t=1

E
(
κ′t,nκt,n

)
.

Then using (A.11)

E
(
κ′t,nκt,n

)
=

1

n

n∑
i=1

n∑
j=1

γ ′iγjσiσjE (εitεjt) =
1

n

n∑
i=1

σ2
i (γ ′iγi) < K, (A.20)

it then follows that

E

∥∥∥∥∥T−1

T∑
t=1

κt,nκ
′
t,n

∥∥∥∥∥ ≤ 1

n

n∑
i=1

σ2
i (γ ′iγi) < K,

and T−1
∑T

t=1 κt,nκ
′
t,n = Op(1). Using this result together with (A.19) we then have

g3,nT = op(1). (A.21)

Similarly, by Cauchy-Schwarz inequality and using (A.18) and (A.20) we have

E

∥∥∥∥∥ 1

T

T∑
t=1

κt,nυnT,t

∥∥∥∥∥ ≤ 1

T

T∑
t=1

E ‖κt,nυnT,t‖ ≤
1

T

T∑
t=1

[
E
(
κ′t,nκt,n

)]1/2 [
E
(
υ2
t,nT

)]1/2
,

≤

[
1

n

n∑
i=1

σ2
i (γ ′iγi)

]1/2(
1

T

T∑
t=1

[
E
(
υ2
t,nT

)]1/2)
= O

(
T−1/2

)
.
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Then using the above results it also follows that

g4,nT =
√
T (ϕnT −ϕn)′

(
1

T

T∑
t=1

κt,nυt,nT

)
= op(1). (A.22)

Similarly,

E

∥∥∥∥∥ 1

T

T∑
t=1

κntξt,n

∥∥∥∥∥ ≤ 1

T

T∑
t=1

[
E
(
κ′t,nκt,n

)]1/2 [
E
(
ξ2
t,n

)]1/2
,

where using (A.8) E
(
ξ2
t,n

)
= 1

n

∑n
i=1 a

2
i,n = 1

n

∑n
i=1 (1− σiϕ′nγi)

2 < K. Hence, E
∥∥∥ 1
T

∑T
t=1 κt,nξt,n

∥∥∥ <
K, and again using (A.19) it follows that

g5,nT =
√
T (ϕnT −ϕn)′

(
1

T

T∑
t=1

κt,nξt,n

)
= op(1). (A.23)

Using results (A.17) to (A.23) in (A.16) now yields

1√
T

T∑
t=1

ψ2
t,nT =

(
1√
T

T∑
t=1

ξ2
t,n

)(
1 +

2
∑T

t=1 ξt,nυt,nT∑T
t=1 ξ

2
t,n

)
+ op(1). (A.24)

as desired. Consider now the (population) bias-corrected version of C̃D defined by

C̃D
∗

=
C̃D +

√
T
2
θn

1− θn
(A.25)

where θn = 1− 1
n

∑n
i=1 a

2
i,n, and ai,n = 1− σiϕ′nγi. Then using (A.15) in (A.25), we have

C̃D
∗

=

1√
T

∑T
t=1

[
ψ2
t,nT−1
√

2

]
+
√

T
2
θn

1− θn
+ op (1)

=

1√
T

∑T
t=1

ψ2
t,nT√

2
−
√

T
2

(1− θn)

1− θn
+ op (1)

Now using (A.24) in the above and after some re-arrangement of the terms we obtain

C̃D
∗

=

[
1√
T

∑T
t=1

(
ξ2t,n−(1−θn)

√
2

)](
1 + 2√

T
wnT

)
1− θn

+
√

2wnT + op (1) , (A.26)

where

wnT =
T−1

∑T
t=1 ξt,n

(√
Tυt,nT

)
T−1

∑T
t=1 ξ

2
t,n

. (A.27)
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It is clear that the denominator of wnT is Op(1), and using (A.8) and (A.12) we have

ξt,n =
1√
n

n∑
i=1

ai,nεit →d N(0, ω2
ξ ),

where ω2
ξ = limn→∞

(
1
n

∑n
i=1 a

2
i,n

)
< K. Consider now the numerator of (A.27), and note that

there exists T0 such that for all T > T0, ξt,n

(√
Tυt,nT

)
are serially independent with zero means

and finite variances. Also using (A.12I note that

√
Tυt,nT =

1√
n

n∑
i=1

√
T

(
1

(ε′iMFεi/T )1/2
− 1

)
εit,

where it is easily seen that

E
(√

Tυt,nT

)
= 0, and V ar

(√
Tυt,nT

)
=

1

n

n∑
i=1

E

T ( 1

(ε′iMFεi/T )1/2
− 1

)2

ε2
it

 .
Also using (S.54) and (S.55) in Lemma S.7 of the online supplement, we have

E

T ( 1

(ε′iMFεi/T )1/2
− 1

)2

ε2
it

 = T

[
E

(
ε2
it

(ε′iMFεi/T )

)
+ 1− 2E

(
ε2
it

(ε′iMFεi/T )1/2

)]
= T

[
1 +O

(
T−1

)
+ 1− 2

[
1 +O

(
T−1

)]]
= O(1).

Hence, for all T > T0 by application of standard central limit theorem to
√
Tυt,nT we have√

Tυt,nT →d N(0, ω2
v), as n→∞, where

ω2
v = limn→∞

1

n

n∑
i=1

E

T ( 1

(ε′iMFεi/T )1/2
− 1

)2

ε2
it

 < K.

Then it readily follows that

V ar

[
T−1

T∑
t=1

ξt,n

(√
Tυt,nT

)]
= T−2

T∑
t=1

E
(
ξ2
t,nTυ

2
t,nT

)
= O(T−1),

and hence T−1
∑T

t=1 ξt,n

(√
Tυt,nT

)
= op(1). Using this result in (A.27) and noting that its

numerator is bounded then it follows that wnT = op(1), and as a result (using (A.26)) we finally

have

C̃D
∗

=

1√
T

∑T
t=1

(
ξ2t,n−(1−θn)

√
2

)
1− θn

+ op (1) ,
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with E
(
ξ2
t,n

)
= 1− θn = 1

n

∑n
i=1 a

2
i,n = 1

n

∑n
i=1 (1− σiϕ′nγi)

2 > 0, and

V ar
(
ξ2
t,n

)
= 2

(
1

n

n∑
i=1

a2
i,n

)2

− κ2

(
1

n2

n∑
i=1

a4
i,n

)
,

where κ2 = E (ε4
it)− 3. But since 1

n2

∑n
i=1 a

4
i,n = O(n−1), then V ar

(
ξ2
t,n

)
= 2 (1− θn)2 + o(1),

and

C̃D
∗

=
C̃D +

√
T
2
θn

1− θn
+ op (1)

=
1√
T

T∑
t=1

ξ2
t,n − E

(
ξ2
t,n

)√
V ar

(
ξ2
t,n

)
+ op (1) .

Recalling that ξ2
t,n for t = 1, 2, ..., T are distributed independently over t, then

1√
T

T∑
t=1

ξ2
t,n − E

(
ξ2
t,n

)√
V ar

(
ξ2
t,n

)
→p N(0, 1).

Also by Lemma S.9 in the online supplement, CD = C̃D + op(1).Then it follows that

CD∗(θn) =
CD +

√
T
2
θn

1− θn
=
C̃D + +

√
T
2
θn

1− θn
+ op(1)

=
1√
T

T∑
t=1

ξ2
t,n − E

(
ξ2
t,n

)√
V ar

(
ξ2
t,n

)
+ op (1)→p N(0, 1),

which establishes part (a) of Theorem 1. To prove part (b) of the theorem we first note that

θn = 1− 1

n

n∑
i=1

a2
i,n = 1− 1

n

n∑
i=1

(1− σiϕ′nγi)
2

= 2ϕ′n

(
1

n

n∑
i=1

σiγi

)
−ϕ′n

(
1

n

n∑
i=1

σ2
i γiγ

′
i

)
ϕn, (A.28)

where ϕn = n−1
∑n

i=1 γi/σi. Then

|θn| ≤ supi(σ
2
i ) ‖ϕn‖

2
1

(
1

n

n∑
i=1

‖γi‖
2
1

)
+ 2supi(σi) ‖ϕn‖1

(
1

n

n∑
i=1

‖γi‖1

)
.
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‖γi‖1 =
∑m0

j=1 |γij|, and

‖ϕn‖1 ≤ infi(σi)

(
1

n

n∑
i=1

‖γi‖1

)
= infi(σi)

[
m0∑
j=1

(
1

n

n∑
i=1

|γij|

)]
. (A.29)

Since by assumption infi(σi) > c > 0, and supi(σ
2
i ) < K < ∞, then the order of |θn| is

determined by
∑m0

j=1

(
1
n

∑n
i=1 |γij|

)
, where m0 is a fixed integer. Hence, |θn| = 	 (nα−1) as

required, where α = maxj(αj), and αj is defined by
∑n

i=1 |γij| = 	 (nαj). See (4).

Proof of Corollary 1. Note that θn define by (26) can be written as

θn = 2gn −ϕ′nHnϕn,

where

gn =
1

n

n∑
i=1

σiϕ
′
nγi, Hn =

1

n

n∑
i=1

σi (γiγ
′
i) ,

ϕn =
1

n

n∑
i=1

δi, and δi =
γi
σi
.

Similarly using (27) we have

θ̂nT = 2ĝnT − ϕ̂′nT ĤnT ϕ̂nT ,

where

ĝnT =
1

n

n∑
i=1

σ̂i,T ϕ̂
′
nT γ̂i, ĤnT =

1

n

n∑
i=1

σ̂2
i,T (γ̂iγ̂

′
i) ,

ϕ̂nT =
1

n

n∑
i=1

δ̂i,nT , and δ̂i,nT =
γ̂i
σ̂i,T

.

Then √
T
(
θ̂nT − θn

)
= 2
√
T (ĝnT − gn)−

√
T
(
ϕ̂′nT ĤnT ϕ̂nT −ϕ′nHnϕn

)
. (A.30)

Consider the first term of the above

2
√
T (ĝnT − gn) = 2

√
T (ϕ̂nT −ϕn)

(
1

n

n∑
i=1

σiγi

)

+ 2
√
T

[
ϕ̂′nT

(
1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi

)]
, (A.31)

and since σi and γi are bounded then n−1
∑n

i=1 σiγi = Op(1). Also by (S.43) of Lemma S.5 we

have
√
T (ϕ̂nT −ϕn) = op(1), and hence the first term of the above is op(1). To establish the

41



probability order of the second term of (A.31), we first note that

2
√
T

[
ϕ̂′nT

(
1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi

)]
= 2
√
T

[
ϕ′n

(
1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi

)]

+ 2
√
T

[
(ϕ̂nT −ϕn)

′

(
1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi

)]
.

(A.32)

But by (A.29) ϕn = Op(1), and by (S.68) in Lemma S.10 of the online supplement (recall that

δnT = min(
√
n,
√
T )).

1

n

n∑
i=1

(σ̂i,T γ̂i − σiγi) = Op

(
δ−2
nT

)
,

which also establishes that the second term of (A.32) is op(1).Therefore overall we have

√
T (ĝnT − gn) = op(1). (A.33)

Consider now the second term of (A.30) and note that

√
T
(
ϕ̂′nT ĤnT ϕ̂nT −ϕ′nHnϕn

)
=
√
T (ϕ̂nT −ϕn)′ ĤnT (ϕ̂nT −ϕn)

+ 2
√
T (ϕ̂nT −ϕn)′ ĤnTϕn +

√
Tϕ′n

(
ĤnT −Hn

)
ϕn, (A.34)

where ĤnT = 1
n

∑n
i=1 σ̂

2
i,T (γ̂iγ̂

′
i), and

√
T
(
ĤnT −Hn

)
=

√
T

n

n∑
i=1

σ2
i (γ̂iγ̂

′
i − γiγ ′i) +

√
T

n

n∑
i=1

(
σ̂2
i,T − σ2

i

)
(γ̂iγ̂

′
i − γiγ ′i)

+

√
T

n

n∑
i=1

(
σ̂2
i,T − ω2

i,T

)
γiγ

′
i +

√
T

n

n∑
i=1

(
ω2
i,T − σ2

i

)
γiγ

′
i (A.35)

=
4∑
j=1

Dj,nT .

The first two terms of (A.34) are op(1), since ‖ϕn‖ < K, and
√
T (ϕ̂nT −ϕn) = op(1), and

n−1
∑n

i=1 σ̂
2
i,T (γ̂iγ̂

′
i) = Op(1). To establish the probability order of the third term of (A.34),

since ‖ϕn‖ < K it is sufficient to consider the four terms of
√
T
(
ĤnT −Hn

)
. It is clear that

D2,nT is dominated by D1,nT and by (S.69) of Lemma S.10,

D1,nT =

√
T

n

n∑
i=1

σ2
i (γ̂iγ̂

′
i − γiγ ′i) = Op

(√
T

δ2
nT

)
= op(1).
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Using (S.11) of Lemma S.2 in the online supplement and replacing bni with γijγij′ for j, j′ =

1, 2, . . . ,m0, it then follows that

D3,nT =

√
T

n

n∑
i=1

(
σ̂2
i,T − ω2

i,T

)
γiγ

′
i = Op

(√
T

δ2
nT

)
op(1).

Finally, denote the (j, j′) element of D4,nT by d4,nT (j, j′) and note that

d4,nT (j, j′) =
1

n

n∑
i=1

(
σ2
i γijγij′

)√
T

(
ε
′
iMFεi
T

− 1

)
, for j, j′ = 1, 2, ...,m0.

But under Assumptions 2 and 3, |σ2
i γijγij′| < K, and

√
T
(
T−1ε

′
iMFεi − 1

)
, for i = 1, 2, ..., n

are identically and independently distributed across i, with mean m0/
√
T and a finite vari-

ance.11 Then by standard law of large numbers, for each (j, j′), d4,nT (j, j′) →p 0, as n and

T → ∞, and hence we also have D4,nT = op(1). Overall, ĤnT − Hn = op(1), and we have√
T
(
ϕ̂′nT ĤnT ϕ̂nT −ϕ′nHnϕn

)
= op(1). Using this result and (A.33) in (A.30) now yields

√
T
(
θ̂nT − θn

)
= op(1), as required.

Proof of Theorem 2. Recall from (30) that CD∗
(
θ̂nT

)
is given by

CD∗
(
θ̂nT

)
=
CD +

√
T
2
θ̂nT

1− θ̂nT
,

where θ̂nT = 1 − 1
n

∑n
i=1 â

2
i,n,, âi,n = 1 − σ̂i,T (ϕ′nT γ̂i) , and ϕ̂nT = n−1

∑n
i=1 γ̂i/σ̂i,T , subject

to the normalization n−1
∑n

i=1 γ̂iγ̂
′

i = Im0 . By Lemma S.9 of the online supplement we have

CD = C̃D + op(1). Then CD∗(θ̂nT ) can be written as (noting that 1− θ̂nT = 1
n

∑n
i=1 â

2
i,n > 0)

CD∗(θ̂nT ) =
CD +

√
T
2
θ̂nT

1− θ̂nT
=
C̃D +

√
T
2
θ̂nT

1− θ̂nT
+ op (1) .

By result (29) of Corollary 1,
√
T
(
θ̂nT − θn

)
= op(1), and hence

CD∗(θ̂nT ) =
C̃D +

√
T
2
θn +

√
T
2

(
θ̂nT − θn

)
1− θn −

(
θ̂nT − θn

) + op(1)

=
C̃D +

√
T
2
θn

1− θn
+ op (1) = CD∗(θn) + op (1)

11The mean and variance of
√
T
(
T−1ε

′

iMFεi − 1
)

can be obtained using (S.47) and (S.48) in Lemma S.7 of

the online supplement.
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However, by Theorem 1, CD∗(θn) →p N(0, 1), which in turn establishes that CD∗(θ̂nT ) →p

N(0, 1), considering that CD∗(θ̂nT )− CD∗(θn) = op(1).

Proof of Theorem 3 . Let vit = yit − β
′

ixit, and uit = yit − β
′

ixit − γ
′
ift = vit − γ

′
ift, and

consider the following two optimization problems

min
Γ,F

1

nT

n∑
i=1

T∑
t=1

(
vit − γ

′

ift

)2

, (A.36)

min
Γ,F

1

nT

n∑
i=1

T∑
t=1

(
v̂it − γ

′

ift

)2

, (A.37)

where

v̂it = yit − β̂
′

CCE,ixit = yit − β
′

ixit −
(
β̂CCE,i − βi

)′
xit = vit −

(
β̂CCE,i − βi

)′
xit. (A.38)

We need to show that solving problem (A.37) is asymptotically equivalent to solving problem

(A.36). First, using (A.38) the criterion for (A.37) can be written as

1

nT

n∑
i=1

T∑
t=1

(
v̂it − γ

′

ift

)2

=
1

nT

n∑
i=1

T∑
t=1

(
vit − γ

′

ift −
(
β̂CCE,i − βi

)′
xit

)2

≡ 1

nT

n∑
i=1

T∑
t=1

(
vit − γ

′

ift

)2

+
1

nT

T∑
t=1

n∑
i=1

(
β̂CCE,i − βi

)′
xitx

′

it

(
β̂CCE,i − βi

)
− 2

1

nT

n∑
i=1

T∑
t=1

(
vit − γ

′

ift

)(
β̂CCE,i − βi

)′
xit

= AnT +BnT − 2CnT . (A.39)

Note now that

|BnT | = BnT ≤ λmax

(
1

T

T∑
t=1

xitx
′

it

)
× supi

∥∥∥β̂CCE,i − βi∥∥∥ ,
where under Assumptions 1-8, we have supi λmax

(
1
T

∑T
t=1 xitx

′
it

)
< K, and12

β̂CCE,i − βi = Op

(
1√
T

)
+Op

(
1

n

)
+Op

(
1√
nT

)
. (A.40)

12See equation (45) in Pesaran (2006).
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Therefore, we also have BnT = Op

(
1√
T

)
+ Op

(
1
n

)
+ Op

(
1√
nT

)
.13 Consider now the final term

of (A.39) and note that

CnT =
1

nT

T∑
t=1

n∑
i=1

ũit

(
β̂CCE,i − βi

)′
xit =

1

n

n∑
i=1

(
β̂CCE,i − βi

)′ 1

T

T∑
t=1

ũitxit,

where ũit = vit − γ
′
ift = yit − β

′

ixit − γ
′
ift. Since in both optimization problems γi and ft are

only identified up to m0×m0 rotation matrices, ũit and uit have similar properties and we also

have
∥∥∥T−1

∑T
t=1 ũitxit

∥∥∥ = Op

(
T−1/2

)
, with CnT dominated by BnT . Overall we have

min
Γ,F

1

nT

n∑
i=1

T∑
t=1

(
vit − γ

′

ift

)2

≡ min
Γ,F

1

nT

n∑
i=1

T∑
t=1

(
v̂it − γ

′

ift

)2

+Op

(
1√
T

)
+Op

(
1

n

)
+Op

(
1√
nT

)
.

Hence, PCs based on v̂it are asymptotically equivalent to those based on vit. The remaining

proof of Theorem 3 can follow from the proof of Theorem 2.
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This online supplement provides proofs of the lemmas used in the main paper, and states

and establishes a number of auxiliary lemmas used for these proofs.

S1 Proof of Lemmas

This section provides auxiliary lemmas and the associated proofs, which are required to establish

the main results of the paper. Throughout δnT = min(
√
n,
√
T ).

Lemma S.1 Suppose that Assumptions 1-3 hold, and the latent factors, ft, and their loadings,

γi, in model (1) are estimated by principle components, f̂t and γ̂i, given by (5). Then

∥∥∥F̂− F
∥∥∥
F

= Op

(√
T

δnT

)
, (S.1)

∥∥∥Γ̂− Γ
∥∥∥
F

= Op

(√
n

δnT

)
, (S.2)

∥∥∥U′
(F̂− F)

∥∥∥
F

= Op

(√
nT

δnT

)
, (S.3)

∥∥∥Γ′(Γ̂− Γ)
∥∥∥ = Op

(
n

δnT

)
, (S.4)
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∥∥∥F′(F̂− F)
∥∥∥ = Op

(
T

δnT

)
, (S.5)(

F̂− F
)′

F = Op

(
T

δ2
nT

)
, (S.6)(

F̂− F
)′

F̂ = Op

(
T

δ2
nT

)
, (S.7)(

F̂− F
)′

ui = Op

(
T

δ2
nT

)
, (S.8)

(Γ̂− Γ)′ut = Op

(
n

δ2
nT

)
, (S.9)

where ui = (ui1, ui2, ..., uiT )′, ut = (u1t, u2t, ..., unt)
′, and U = (u1,u2, ...,un).

Proof. Since Assumptions 1-3 are a sub-set of assumptions made by Bai (2003), results (S.1)

to (S.4), (S.6) and (S.8) follow directly from Lemmas B1, B2 and B3, and Theorem 2 of Bai

(2003). The remaining two results, (S.5) and (S.9), can be established analogously.

Lemma S.2 Consider σ̂2
i,T = T−1e

′
iei, the estimator of the σ2

i , the error variance of the ith

unit of the latent factor model, (1), where ei = (ei1, ei2, ..., eiT )′ is the principle component

estimator of ui = (ui1, ui2, ..., uiT )′, namely ei = MF̂yi, where MF̂ = IT − F̂(F̂
′
F̂)
−1

F̂′, yi =

(yi1, yi2, ..., yiT )′, and F̂ is given by (5). Suppose that Assumptions 1-3 hold. Then

σ̂2
i,T − ω2

i,T = Op

(
1

δ2
nT

)
, (S.10)

1

n

n∑
i=1

bin
(
σ̂2
i,T − ω2

i,T

)
= Op

(
1

δ2
nT

)
, (S.11)

σ̂i,T − ωi,T = Op

(
1

δ2
nT

)
, (S.12)

1

n

n∑
i=1

bin (σ̂i,T − ωi,T ) = Op

(
1

δ2
nT

)
, (S.13)

1

σ̂i,T
− 1

ωi,T
= Op

(
1

δ2
nT

)
, (S.14)

1

n

n∑
i=1

bin

(
1

σ̂i,T
− 1

ωi,T

)
= Op

(
1

δ2
nT

)
, (S.15)

where ω2
i,T = T−1u

′
iMFui, MF = IT −F(F′F)−1F′, δ2

nT = min(n, T ), and {bin}ni=1 is a sequence

of fixed bounded constants such that n−1
∑n

i=1 b
2
in = O(1).
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Proof. We first note that

ei = MF̂yi = MF̂ (Fγi + ui)

= MFui + (MF̂ −MF) ui + MF̂Fγi,

which yields the following error variance decomposition

σ̂2
i,T =

u
′
iMFui
T

+
γ
′
iF
′
MF̂Fγi
T

+
u
′
i (MF̂ −MF) (MF̂ −MF) ui

T

+
2u
′
iMF (MF̂ −MF) ui

T
+

2u
′
iMFMF̂Fγi

T
+

2u
′
i (MF̂ −MF) MF̂Fγi

T

=
6∑
j=1

Bj,iT . (S.16)

Starting with the second term, we note that

‖B2,iT‖ =

∥∥∥∥∥∥∥
γ
′
i

(
F− F̂

)′
MF̂

(
F− F̂

)
γi

T

∥∥∥∥∥∥∥ ≤ ‖γi‖2

∥∥∥F− F̂
∥∥∥2

T
‖MF̂‖ ,

where ‖γi‖ is bounded by Assumption 2 and ‖MF̂‖ = 1. Then using (S.1) it follows that

‖B2,iT‖ = Op

(
δ−2
nT

)
. Before establishing the probability order of the remaining terms B3,iT we

first observe that

F̂
(
F̂
′
F̂
)−1

F̂
′ − F

(
F
′
F
)−1

F
′

=
(
F̂− F + F

)(
F̂
′
F̂
)−1 (

F̂− F + F
)′
− F

(
F
′
F
)−1

F
′

=
(
F̂− F

)(
F̂
′
F̂
)−1 (

F̂− F
)′

+

[
F
(
F̂
′
F̂
)−1

F
′ − F

(
F
′
F
)−1

F
′
]

+ F
(
F̂
′
F̂
)−1 (

F̂− F
)′

+
(
F̂− F

)(
F̂
′
F̂
)−1

F,

and

F̂
′
F̂

T
− F

′
F

T
=

(
F̂− F

)′ (
F̂− F

)
T

+

(
F̂− F

)′
F

T
+

F
′
(
F̂− F

)
T

.

Then using results (S.1) and (S.5) it follows that

F̂
′
F̂

T
=

F
′
F

T
+Op

(
1

δ2
nT

)
, and

(
F̂
′
F̂

T

)−1

=

(
F
′
F

T

)−1

+Op

(
1

δ2
nT

)
, (S.17)
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and in consequence (given that by assumption T−1F
′
F is a positive definite matrix)

F̂
′
F̂

T
= Op(1), and

(
F̂
′
F̂

T

)−1

= Op(1). (S.18)

Consider now B3,iT , and note that

B3,iT = T−1u
′

i (MF̂ −MF) (MF̂ −MF) ui

=
1

T
u
′

i

[
F̂
(
F̂
′
F̂
)−1

F̂
′ − F

(
F
′
F
)−1

F
′
]

ui. (S.19)

and

F̂
(
F̂
′
F̂
)−1

F̂
′ − F

(
F
′
F
)−1

F
′

=
(
F̂− F

)(
F̂
′
F̂
)−1 (

F̂− F
)′

+

[
F
(
F̂
′
F̂
)−1

F
′ − F

(
F
′
F
)−1

F
′
]

+ F
(
F̂
′
F̂
)−1 (

F̂− F
)′

+
(
F̂− F

)(
F̂
′
F̂
)−1

F,

which allows us to write B3,iT as B3,iT =
∑4

s=1Cs,iT , with the first term satisfying

‖C1,iT‖ =

∥∥∥∥ 1

T
u
′

i

(
F̂− F

)(
F̂
′
F̂
)−1 (

F̂− F
)′

ui

∥∥∥∥
≤ ‖ui‖

2

T

∥∥∥∥∥∥
(

F̂
′
F̂

T

)−1
∥∥∥∥∥∥

∥∥∥F̂− F

∥∥∥2

T

 .

The first two terms are bounded in probability, since T−1 ‖ui‖2 = T−1
∑T

t=1 u
2
it = σ2

i +

Op

(
T−1/2

)
, and given the results in (S.18). Using (S.1) it now follows that ‖C1,iT‖ = Op

(
δ−2
nT

)
.

To establish the order of C2,iT , we note that

F
(
F̂
′
F̂
)−1

F
′ − F

(
F
′
F
)−1

F
′

= F
(
F
′
F
)−1 [

F
′
F− F̂

′

F̂
] (

F̂
′
F̂
)−1

F
′

= F
(
F
′
F
)−1

[
F
′
F−

(
F̂− F + F

)′ (
F̂− F + F

)](
F̂
′
F̂
)−1

F
′

= F
(
F
′
F
)−1

[
−
(
F̂− F

)′ (
F̂− F

)
−
(
F̂− F

)′
F− F

′
(
F̂− F

)](
F̂
′
F̂
)−1

F
′
,

S4



then we have

C2,iT =
u
′
iF√
T

(
F
′
F

T

)−1
 −(F̂−F)

′
(F̂−F)
T

− (F̂−F)
′
F

T

−F
′
(F̂−F)
T

(F̂
′
F̂

T

)−1
F
′
ui√
T
,

and by taking spectral norms

‖C2,iT‖ ≤
∥∥∥∥u

′
iF√
T

∥∥∥∥2
∥∥∥∥∥
(

F
′
F

T

)−1
∥∥∥∥∥
∥∥∥∥∥∥
(

F̂
′
F̂

T

)−1
∥∥∥∥∥∥

∥∥∥F̂− F

∥∥∥2

T
+

2

∥∥∥∥(F̂− F
)′

F

∥∥∥∥
T

 .
Under Assumption 3, T−1/2u

′
iF = Op (1), and using results (S.1) and (S.5) it follows that

‖C2,iT‖ = Op

(
1
δ2nT

)
. Finally, by result (S.8)

(F̂−F)
′
ui√

T
= Op

(√
T

δ2nT

)
, and it follows that

‖C3,iT‖ = ‖C4,iT‖ ≤
1

T

∥∥∥∥uiF√
T

∥∥∥∥
∥∥∥∥∥∥
(

F̂
′
F̂

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥∥∥
(
F̂− F

)′
ui

√
T

∥∥∥∥∥∥∥ = Op

(
1√
TδnT

)
,

and overall we B3,iT = Op

(
1
δ2nT

)
. Consider now the fourth term of (S.16),

B4,iT =
u
′
i (Im −PF) (PF −PF̂) ui

T
=

u
′
i (PF −PF̂ + PFPF̂) ui

T

=
u
′
i (PF −PF̂) ui

T
− u

′
iPFui
T

+
u
′
iPFPF̂ui
T

, (S.20)

where PF = F (F′F)−1 F′, and PF̂ = F̂
(
F̂′F̂

)
F̂′. The order of the first term of (S.20) is the

same as that of (S.19), namely Op

(
δ−2
nT

)
. Since F is distributed independently of ui, using

(S.18) , then it readily follows that the second term is Op (T−1). The third term of (S.20) can
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be written as∥∥∥∥∥∥u
′
iF

T

(
F
′
F

T

)−1
(

F
′
F̂

T

)(
F̂
′
F̂

T

)−1
F̂
′
ui
T

∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
1√
T

(
u
′
iF√
T

)(
F
′
F

T

)−1
F

′
F

T
+

F
′
(
F̂− F

)
T

(F̂
′
F̂

T

)−1
F

′
ui
T

+

(
F̂− F

)′
ui

T


∥∥∥∥∥∥∥

≤ 1√
T

∥∥∥∥u
′
iF√
T

∥∥∥∥
∥∥∥∥∥
(

F
′
F

T

)−1
∥∥∥∥∥
∥∥∥∥F

′
F

T

∥∥∥∥+

∥∥∥∥∥∥
F
′
(
F̂− F

)
T

∥∥∥∥∥∥
∥∥∥∥∥∥

(
F̂
′
F̂

T

)−1
∥∥∥∥∥∥
∥∥∥∥F

′
ui
T

∥∥∥∥+

∥∥∥∥∥∥∥
(
F̂− F

)′
ui

T

∥∥∥∥∥∥∥


=
1√
T
Op (1)×Op

(
1√
T

)
= Op

(
1

T

)
.

Consider now B5,iT and note that

γ
′
iF
′
MF̂MFui
T

= −
γ
′
i

(
F̂− F

)′
MF̂ui

T
−
γ
′
iF
′
MF̂F

(
F
′
F
)−1

F
′
ui

T

= −
γ
′
i

(
F̂− F

)′
ui

T
+
γ
′
i

(
F̂− F

)′
F̂

T

(
F̂
′
F̂

T

)−1
F̂
′
ui
T

+ γ
′

i

F
′
MF̂

(
F̂− F

)
T

(
F
′
F

T

)−1
F
′
ui
T

. (S.21)

But, using results in Lemma S.1, we have∥∥∥∥∥∥∥
γ
′
i

(
F̂− F

)′
ui

T

∥∥∥∥∥∥∥ ≤ ‖γi‖
∥∥∥∥∥∥∥
(
F̂− F

)′
ui

T

∥∥∥∥∥∥∥ = Op

(
1

δ2
nT

)
,

∥∥∥∥∥∥∥
γ
′
i

(
F̂− F

)′
F̂

T

(
F̂
′
F̂

T

)−1
F̂
′
ui
T

∥∥∥∥∥∥∥ ≤ ‖γi‖
∥∥∥∥∥∥∥
(
F̂− F

)′
F̂

T

∥∥∥∥∥∥∥
∥∥∥∥∥∥
(

F̂
′
F̂

T

)−1
∥∥∥∥∥∥
∥∥∥∥∥F̂

′
ui
T

∥∥∥∥∥
= Op

(
1

δ2
nT

√
T

)
,
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and ∥∥∥∥∥∥γ ′i
F
′
MF̂

(
F̂− F

)
T

(
F
′
F

T

)−1
F
′
ui
T

∥∥∥∥∥∥ ≤ ‖γi‖
∥∥∥F̂− F

∥∥∥2

T

∥∥∥∥∥∥
(

F̂
′
F̂

T

)−1
∥∥∥∥∥∥
∥∥∥∥F

′
ui
T

∥∥∥∥
= Op

(
1

δ2
nT

√
T

)
.

Thus, B5,iT = T−1γ
′
iF
′
MF̂MFui = Op

(
δ−2
nT

)
. Similarly B6,iT = Op

(
δ−2
nT

)
. The above results

now establish (S.10). Result (S.11) can be obtained similarly, either by directly considering

the weighted average of (S.10) with weights bin, or by noting that σ̂2
i,T and ω2

i,T are both

integrable processes and the probability order of the average will be the same as the probability

order of the underlying units. Results (S.12) and (S.14) follow from (S.10), noting that under

Assumption 3 there exists T0 such that for all T > T0, σ̂2
i,T > c > 0 and ω2

iT > c > 0.

Furthermore, σ̂i,T + ωi,T = Op(1) and ωi,T σ̂i,T = Op(1). More specifically, to establish (S.12)

note that |σ̂i,T − ωi,T | ≤
∣∣σ̂2
i,T − ω2

i,T

∣∣ / (σ̂i,T + ωi,T ) ≤ c−1
∣∣σ̂2
i,T − ω2

i,T

∣∣, and hence by (S.10) we

have |σ̂i,T − ωi,T | = Op

(
δ−2
nT

)
. Similarly, result (S.14) is established noting that∣∣∣∣ 1

σ̂i,T
− 1

ωi,T

∣∣∣∣ ≤ |σ̂i,T − ωi,T |ωi,T σ̂i,T
≤ c−1 |σ̂i,T − ωi,T | = Op

(
1

δ2
nT

)
. (S.22)

Finally, results (S.13) and (S.15) can be obtained, respectively, in a similar way to the proof of

(S.11), since under Assumption 3, σ̂i,T , ωi,T , σ̂−1
i,T and ω−1

i,T are also integrable processes.

Lemma S.3 Suppose that the latent factors, ft, and their loadings, γi, in model (1) are esti-

mated by principle components, F̂ and γ̂i, given by (5). Then under Assumptions 1-3 with n
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and T →∞, such that n/T → κ , for 0 < κ <∞, we have

d1,nT =
1√
n

n∑
i=1

bin(γ̂i − γi) = Op

(
1

δnT

)
, (S.23)

d2,nT =
1√
n

n∑
i=1

(ωi,T − σi) (γ̂i − γi) = Op

(
1

δnT

)
, (S.24)

d3,nT =
1√
n

n∑
i=1

(
1

ωiT
− 1

σi

)
(γ̂i − γi) = Op

(
1

δnT

)
, (S.25)

d4,nT =
1

n

n∑
i=1

(σ̂i,T − ωi,T ) (γ̂i − γi) = Op

(
1

δ2
nT

)
, (S.26)

d5,nT =
1

n

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)
(γ̂i − γi) = Op

(
1

δ2
nT

)
(S.27)

d6,nT =
1

n

n∑
i=1

(δ̂i,T − δi,T ) = Op

(
1

δnT

)
, (S.28)

d7,nT =
1

n

n∑
i=1

bin (γ̂i − γi)γ ′i = Op

(
1

δ2
nT

)
, (S.29)

where {bin}ni=1 is a sequence of fixed values bounded in n, such that n−1
∑n

i=1 b
2
in = O(1),

δi,T = γi/ωiT , δ̂i,T = γ̂i/ωiT , and ωiT = T−1u′iMFui.

Proof. Note that in general

γ̂i − γi =

(
F̂′F̂

T

)−1(
F̂′Fγi
T

+
F̂′ui
T

)
−

(
F̂′F̂

T

)−1(
F̂′F̂

T

)
γi

= −

(
F̂′F̂

T

)−1
F̂′

(
F̂− F

)
γi

T

+

(
F̂′F̂

T

)−1(
F̂′ui
T

)
, (S.30)

and we have

d1,nT = n−1/2

n∑
i=1

bin (γ̂i − γi)

= −

(
F̂′F̂

T

)−1 [√
n

T
F̂′
(
F̂− F

)]( 1

n

n∑
i=1

binγi

)
+

(
F̂′F̂

T

)−1

T−1

(
n−1/2

n∑
i=1

binF̂
′ui

)
.

(S.31)
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By result (S.18)
(
T−1F̂′F̂

)−1

= Op(1), and by result (S.5) we have

√
n

T
F̂′
(
F̂− F

)
= Op

(√
nT

Tδ2
nT

)
= Op

( √
n

min (n, T )

)
= Op

(
1

δnT

)
. (S.32)

Also since by assumption ‖γi‖ < K, and∥∥∥∥∥ 1

n

n∑
i=1

biγi

∥∥∥∥∥ ≤
(

1

n

n∑
i=1

b2
in

)1/2 ∥∥∥∥∥ 1

n

n∑
i=1

γiγ
′

i

∥∥∥∥∥
1/2

≤

(
1

n

n∑
i=1

b2
in

)1/2(
1

n

n∑
i=1

‖γi‖
2

)1/2

< K.

Hence, the first term of (S.31) is Op

(
δ−1
nT

)
. For the second term of (S.31), since

(
T−1F̂′F̂

)−1

=

Op(1), we note that

T−1
(
F̂− F + F

)′(
n−1/2

n∑
i=1

binui

)
= n−1/2

n∑
i=1

bin

(
F̂− F

T

)′
ui +

1

T
√
n

n∑
i=1

binF
′
ui.

It is clear that the first term is dominated by the second term, and under Assumptions 3, we

have
1

T
√
n

n∑
i=1

binF
′
ui =

(
1√
nT

n∑
i=1

T∑
t=1

binftuit

)
1√
T

= Op

(
1√
T

)
. (S.33)

Result (S.23) now follows using (S.32) and (S.33) in (S.31), and noting that by assumption n

and T are of the same order. To prove (S.24) we first write it as

d2,nT =

(√
n

T

)
1

n

n∑
i=1

qiT (γ̂i − γi) ,

where

qiT =
√
T (ωi,T − σi) = σi

√
T

[(
ε′iMFεi

T

)1/2

− 1

]
,

and qiT are independently distributed across i. Using results in Lemma S.7 it is easily seen

that E (qiT ) = Op(T
−1/2) and V ar (qiT ) = O(1), and hence n−1

∑n
i=1 q

2
iT = Op(1). Also by

Cauchy-Schwarz inequality we have

|d2,nT | ≤
(√

n

T

)(
n−1

n∑
i=1

q2
iT

)1/2 (
n−1/2

∥∥∥Γ̂− Γ
∥∥∥) ,

where T−1n = 	(1), and by (S.2) n−1/2
∥∥∥Γ̂− Γ

∥∥∥ = Op(δ
−1
nT ), and (S.24) is established. Re-
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sult (S.25) follows similarly, with qiT defined as qiT = σ−1
i

√
T

[(
ε′iMF εi

T

)−1/2

− 1

]
. Note

that supi(1/σ
2
i ) < K, and using results in Lemma S.7 it is again easily established that

E (q′iT ) = O(T−1/2), and V ar (q′iT ) = Op(1). Result (S.26) is also obtained using Cauchy-

Schwarz inequality, namelyS1

|d4,nT | ≤

[
n−1

n∑
i=1

(σ̂i,T − ωi,T )2

]1/2 (
n−1/2

∥∥∥Γ̂− Γ
∥∥∥) ,

where by (S.2) n−1/2
∥∥∥Γ̂− Γ

∥∥∥ = Op

(
δ−1
nT

)
, and by (S.12) n−1

∑n
i=1 (σ̂i,T − ωi,T )2 = Op(δ

−2
nT ).

Similarly by (S.2) and (S.14) we have

|d5,nT | ≤

[
n−1

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)2
]1/2 (

n−1/2
∥∥∥Γ̂− Γ

∥∥∥) ,
= Op

(
1

δnT

)
Op

(
1

δnT

)
= Op

(
1

δ2
nT

)
.

Consider now (S.28), and note that it can be written as

1√
n

n∑
i=1

(δ̂i,T − δi,T ) =
1√
n

n∑
i=1

(
γ̂i
ωi,T
− γi
ωi,T

)
=

1√
n

n∑
i=1

(
γ̂i − γi
σi

)(
1− ωi,T − σi

ωi,T

)
=

1√
n

n∑
i=1

(
γ̂i − γi
σi

)
− 1√

n

n∑
i=1

(
γ̂i − γi
σi

)(
1− T

ε′iMFεi

)
.

The first term of the above has the same form as (S.23), and becomes identical to it if we replace

ai in (S.23) with 1/σi, since by assumption infi(σi) > c. Hence, the order of the first term

is Op(δ
−1
nT ). Also the second term is dominated by the first term, since 1 − (T−1ε′iMFεi)

−1
=

Op(T
−1/2). Therefore (S.28) is established as required. Finally, consider result (S.29) and note

S1The proofs of (S.24) and (S.25) are different from that of (S.26) and (S.27) due to the fact that ω2
iT − σ2

i =
Op

(
T−1/2

)
, but σ̂2

iT − ω2
iT = Op

(
n−1

)
+Op

(
T−1

)
.
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that

n−1/2

n∑
i=1

bin (γ̂ − γi)γ ′i = n−1/2

n∑
i=1

bin

[
−
(
F̂′F̂

)−1

F̂′
(
F̂− F

)
γi +

(
F̂′F̂

)−1

F̂′ui

]
γ ′i

= −
√
n

(
F̂′F̂

T

)−1 F̂′
(
F̂− F

)
T

(
n−1

n∑
i=1

binγiγ
′
i

)
+

(
F̂′F̂

T

)−1

T−1F̂′

(
n−1/2

n∑
i=1

binuiγ
′
i

)

= −
√
n

(
F̂′F̂

T

)−1 F̂′
(
F̂− F

)
T

(
n−1

n∑
i=1

binγiγ
′
i

)

+
√
n

(
F̂′F̂

T

)−1(
n−1

n∑
i=1

T−1bin

(
F̂− F

)′
uiγ

′
i

)
+

(
F̂′F̂

T

)−1(
n−1/2

n∑
i=1

T−1binF
′uiγ

′
i

)
.

(S.34)

Recall that
(
T−1F̂′F̂

)−1

= Op(1), and n−1
∑n

i=1 γiγ
′
i = Op(1). Also note that bin is bounded

in n. Then using (S.7) it follows that (n and T being of the same order)

√
n

(
F̂′F̂

T

)−1 F̂′
(
F̂− F

)
T

(
n−1

n∑
i=1

binγiγ
′
i

)
= Op

( √
n

min(n, T )

)
= Op(δ

−1
nT ).

Similarly, using (S.8)

√
n

(
F̂′F̂

T

)−1(
n−1

n∑
i=1

T−1
(
F̂− F

)′
binuiγ

′
i

)
= Op

( √
n

δ2
nT

)
= Op(δ

−1
nT ).

Finally, the last term of ( S.34) can be written as T−1/2
(
T−1F̂′F̂

)−1 (
n−1/2T−1/2

∑n
i=1 binF

′uiγ
′
i

)
,

where by assumption the m0×m0 matrix, n−1/2T−1/2
∑n

i=1 binF
′uiγ

′
i = ((n−1/2T−1/2

∑n
i=1

∑T
t=1

binfjtuitγij′)) = Op(1), and hence this last term is also Op(δ
−1
nT ). Thus result (S.29) is estab-

lished, as required.

Lemma S.4 Suppose that Assumptions 1 to 3 hold, and as (n, T ) → ∞, n/T → κ, with

0 < κ <∞. Then we have

pnT =
1√
T

T∑
t=1

s2
t,nT = op(1), (S.35)

qnT =
1√
T

T∑
t=1

ψt,nT st,nT = op(1), (S.36)

where ψt,nT and st,nT are defined by (A.6) and (A.7), respectively.
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Proof. Using (A.7), recall that

st,nT = ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]
+ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

]
ft +

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′]
ft

(S.37)

+

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′](
f̂t − ft

)
.

We also note that using (A.9), ψt,nT can be written as

ψt,nT = ξt,n − (ϕnT −ϕn)′ κt,n + υt,nT (S.38)

where

ξt,n =
1√
n

n∑
i=1

ai,nεit, ai,n = 1− σiϕ′nγi, (S.39)

κt,n =
1√
n

n∑
i=1

γiσiεit, (S.40)

υt,nT =
1√
n

n∑
i=1

(
1

(ε′iMFεi/T )1/2
− 1

)
εit. (S.41)

After squaring st,nT , we end up with pnT =
∑10

j=1Aj,nT , composed of four squared terms and

six cross product terms. For the first square term we have

A1,nT =
√
Tϕ′nT

(
1

T

T∑
t=1

bt,nb
′

t,n

)
ϕnT ,

where bt,n = n−1/2
∑n

i=1 (γ̂i − γi)uit = n−1/2
(
Γ̂− Γ

)′
ut. Then

|A1,nT | ≤
√
T

n
‖ϕnT‖

2
∥∥∥(Γ̂− Γ

)∥∥∥2

‖VT‖ ,

where VT = T−1
∑T

t=1 utu
′
t. But by Assumption 3,‖VT‖ = λmax (VT ) = Op(1), and using (S.2)∥∥∥(Γ̂− Γ

)∥∥∥ = Op

( √
n

δnT

)
. Note that

∥∥∥(Γ̂− Γ
)∥∥∥ ≤ ∥∥∥(Γ̂− Γ

)∥∥∥
F

. Also ‖ϕnT‖ = Op(1). Then

|A1,nT | =
√
T
n
Op

( √
n

δnT

)
=
√

T
n
Op

(
1
δnT

)
= Op

(
1
δnT

)
, since n and T are of the same order. For

the second squared term we have

A2,nT =
√
T

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′] (
T−1F′F

) [
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)]
.
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By assumption T−1F′F = Op(1), and using (S.28) n−1/2
∑n

i=1

(
δ̂i,T − δi,T

)
= Op

(
δ−1
nT

)
. Hence,

A2,nT = Op

(√
Tδ−2

nT

)
= op(1). Similarly,

A3,nT =
√
Tϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

](
T−1

T∑
t=1

ftf
′
t

)[
n−1/2

n∑
i=1

γi (γ̂ − γi)
′

]
ϕnT

=
√
Tϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

] (
T−1F′F

) [
n−1/2

n∑
i=1

γi (γ̂ − γi)
′

]
ϕnT ,

where ‖ϕnT‖ is bounded, and by (S.29) n−1/2
∑n

i=1 (γ̂i − γi)γ ′i = Op

(
δ−1
nT

)
. Hence

A3,nT =
√
Tϕ′nTOp

(
1

min(
√
n,
√
T )

)(
T−1F′F

)
Op

(
1

min(
√
n,
√
T )

)
ϕnT

= Op

( √
T

min (n, T )

)
= op (1) .

Next

A4,nT =
√
T

[
1√
n

n∑
i=1

(
δ̂i,T − δi,T

)]′
∥∥∥F̂− F

∥∥∥2

T

[ 1√
n

n∑
i=1

(
δ̂i,T − δi,T

)]
,

where by (S.1) T−1
∥∥∥F− F̂

∥∥∥2

F
= Op

(
δ−2
nT

)
, and by (S.28) n−1/2

∑n
i=1

(
δ̂i,T − δi,T

)
= Op(1).

Hence, A4,nT =
√
TOp

(
δ−2
nT

)
= op(1). Consider now the cross product terms of pnT , starting

with

A5,nT = 2ϕ′nT
1√
T

T∑
t=1

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]
f ′t

[
1√
n

n∑
i=1

(
δ̂i,T − δi,T

)]

= 2ϕ′nT

(
1√
nT

T∑
t=1

(Γ̂− Γ)′utf
′
t

)[
1√
n

n∑
i=1

(
δ̂i,T − δi,T

)]
,

where ϕnT and n−1/2
∑n

i=1

(
δ̂i,T − δi,T

)
are bounded in probability and by (S.9) n−1/2(Γ̂ −

Γ)′ut = Op

( √
n

δ2nT

)
= op(1), and we have A5,nT = op(1), as well (since ut and ft are distributed

independently). Similarly we have
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A6,nT =
2√
T

T∑
t=1

ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]
f ′t

[
n−1/2

n∑
i=1

γi (γ̂i − γi)
′

]
ϕnT

= ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)

(
2√
T

T∑
t=1

uitf
′
t

)][
n−1/2

n∑
i=1

γi (γ̂i − γi)
′

]
ϕnT

= Op

(
1

min (n, T )

)
= op (1) ,

and

A7,nT =
2√
T

T∑
t=1

ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

](
f̂t − ft

)′ [ 1√
n

n∑
i=1

(
δ̂i − δi

)]

= ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)

(
2√
T

T∑
t=1

uit

(
f̂t − ft

)′)][ 1√
n

n∑
i=1

(
δ̂i − δi

)]

= Op

(
1√
T

)
Op

(
1

min(n, T )

)
= op (1) .

Also

A8,nT = 2
√
T

[
n−1/2

n∑
i=1

(
δ̂i − δi

)′](
T−1

T∑
t=1

ftf
′
t

)[
n−1/2

n∑
i=1

γi (γ̂ − γi)
′

]
ϕnT

= 2
√
TOp

(
1

min(
√
n,
√
T )

)(
F′F

T

)
Op

(
1

min(
√
n,
√
T )

)
= Op

( √
T

min(n, T )

)
= op(1),

A9,nT = 2
√
T

[
n−1/2

n∑
i=1

(
δ̂i − δi

)′](
T−1

T∑
t=1

ft

(
ft − f̂t

)′)[
n−1/2

n∑
i=1

(
δ̂i − δi

)]

= 2
√
TOp

(
1

min(
√
n,
√
T )

)F′
(
F̂− F

)
T

Op

(
1

min(
√
n,
√
T )

)

= Op

( √
T

min(n2, T 2)

)
= op(1),

S14



and

A10,nT = 2
√
Tϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

](
T−1

T∑
t=1

ft

(
ft − f̂t

)′)[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)]

= 2
√
Tϕ

′

nTOp

(
1

min(
√
n,
√
T )

)F′
(
F̂− F

)
T

Op

(
1

min(
√
n,
√
T )

)

= Op

( √
T

min(n2, T 2)

)
= op(1).

Overall, we have pnT = op(1), as required. Consider now qnT and note that it can be written

as (using (S.38) in (S.36))

qnT =
1√
T

T∑
t=1

st,nT ξt,n − (ϕnT −ϕn)′
1√
T

T∑
t=1

st,nTκt,n +
1√
T

T∑
t=1

st,nTυt,nT ,

where ξt,n, υt,nT and κt,n are given by (S.39), (S.40) and (S.41), respectively. Consider the first

term of the above and using (S.39) write it as

1√
T

T∑
t=1

st,nT ξt,n = ϕ′nT

[
1√
n

n∑
i=1

(γ̂i − γi)
1√
T

T∑
t=1

ξt,nuit

]

+ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

](
1√
T

T∑
t=1

ξt,nft

)

+

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′]( 1√
T

T∑
t=1

ξt,nft

)

+

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′][ 1√
T

T∑
t=1

ξt,n

(
f̂t − ft

)]

=
4∑
j=1

Bj,nT .

Using (S.39), B1,nT can be written as

B1,nT = ϕ′nT

[√
T√
n

n∑
i=1

(γ̂i − γi)
1√
n

n∑
j=1

aj,n

(
1

T

T∑
t=1

σiεjtεit

)]

where ai,n = 1− σiϕ′nγi. Since εit are independently distributed over i and t; and n and T are
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of the same order, and ϕnT = Op(1), then

B1,nT = Op

(
1√
n

n∑
i=1

ai,nσi (γ̂i − γi)

)
.

Further, letting bin = ai,nσi and noting that n−1
∑n

i=1 σ
2
i (1− σiϕ′nγi)

2 < K, it follows from

(S.23) that n−1/2
∑n

i=1 ai,nσi (γ̂i − γi) = Op(δ
−1
nT ), which in turn establishes that B1,nT = op(1).

Similarly, using (S.39), B2,nT can be written as

B2,nT = ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

](
1√
nT

n∑
j=1

T∑
t=1

aj,nftεjt

)
.

Recall that ϕnT = Op(1), and by (S.29) n−1/2
∑n

i=1 (γ̂i − γi)γ ′i = Op(δ
−1
nT ). Also, under As-

sumption 3 1√
nT

∑n
j=1

∑T
t=1 aj,nftεjt = Op(1). Then it follows that B2,nT = op(1). Similarly,

it is established that B3,nT = op(1), noting that by (S.28) we have n−1/2
∑n

i=1

(
δ̂i,T − δi,T

)
=

Op(δ
−1
nT ). The fourth term, B4,nT , is dominated by the third term and is also op(1). Thus overall,

T−1/2
∑T

t=1 st,nT ξt,n = op(1). Using the same line of reasoning, it is also readily established that

T−1/2
∑T

t=1 st,nTκt,n = op(1), considering that, κt,n = n−1/2
∑n

i=1 γiσiεit has the same format as

ξt,n, and in addition by (S.42) ϕnT −ϕn = Op(n
−1/2T−1/2) +Op(T

−1). Finally, the last term of

qnT is given by

1√
T

T∑
t=1

st,nTυt,nT =
1√
T

T∑
t=1

υt,nTϕ
′
nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]

+
1√
T

T∑
t=1

υt,nTϕ
′
nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

]
ft

+
1√
T

T∑
t=1

υt,nT

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′]
ft

+
1√
T

T∑
t=1

υt,nT

[
n−1/2

n∑
i=1

(
δ̂i,T − δi,T

)′](
f̂t − ft

)
=

4∑
j=1

Cj,nT .
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Using (S.41) we have

C1,nT =
1√
T

T∑
t=1

1√
n

n∑
j=1

(
1(

ε′jMFεj/T
)1/2
− 1

)
εjtϕ

′
nT

[
n−1/2

n∑
i=1

(γ̂i − γi)uit

]

=

√
T

n
ϕ′nT

n∑
j=1

[
n−1/2

n∑
i=1

(γ̂i − γi)
1

T

T∑
t=1

σi

(
1(

ε′jMFεj/T
)1/2
− 1

)
εitεjt

]
.

Again, since εit is distributed independently over i and t, then

1

T

T∑
t=1

σi

(
1(

ε′jMFεj/T
)1/2
− 1

)
εitεjt →p 0, if i 6= j,

and

1

T

T∑
t=1

σi

(
1(

ε′jMFεj/T
)1/2
− 1

)
εitεjt

→p limT
1

T

T∑
t=1

σi

{
E

[
ε2
it

(
ε′iMFεi
T

)−1/2
]
− 1

}
, if i = j

Also by (S.55), E

[
ε2
it

(
ε′iMFεi

T

)−1/2
]

= 1 + O
(

1
T

)
, n and T being of the same order, and by

(S.23) n−1/2
∑n

i=1 (γ̂i − γi) = Op(δ
−1
nT ). It then follows that C1,nT = op(1). Similarly to B2,nT ,

we have

C2,nT = ϕ′nT

[
n−1/2

n∑
i=1

(γ̂i − γi)γ ′i

][
1√
nT

n∑
j=1

T∑
t=1

(
1(

ε′jMFεj/T
)1/2
− 1

)
εjtft

]
= Op(δ

−1
nT )Op(1) = op(1).

The same line of reasoning as used for B3,nT and B4,nT can be used to establish Cj,nT = op(1)

for j = 3 and 4. Hence, T−1/2
∑T

t=1 st,nTυt,nT = op(1), and overall we have qnT = op(1), as

required.

Lemma S.5 Under Assumptions 1-3, and as (n, T ) → ∞, such that n/T → κ, with 0 < κ <

∞, we have √
T (ϕn −ϕnT ) = Op

(
n−1/2

)
+Op

(
T−1/2

)
= op(1), (S.42)

√
T (ϕ̂nT −ϕn) = op(1) (S.43)

where ϕn = n−1
∑n

i=1 γi/σi, ϕnT = n−1
∑n

i=1 γi/ωi,T , ϕ̂nT = n−1
∑n

i=1 γ̂i/σ̂iT , ωiT = T−1u′iMFui,

σ̂2
iT = T−1y′iMF̂yi, and γ̂i and F̂ are the principal component estimators of γi and F.
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Proof. First note that

√
T (ϕn −ϕnT ) =

√
T

n

n∑
i=1

γi

{(
1− σi

ωi,T

)
−
[
1− E

(
σi
ωi,T

)]}
+

√
T

n

n∑
i=1

γi

[
1− E

(
σi
ωi,T

)]
,

= d1,nT + d2,nT .

where

d1,nT = − 1

n

n∑
i=1

√
T

[
σi
ωi,T
− E

(
σi
ωi,T

)]
γi,

d2,nT =

√
T

n

n∑
i=1

[
1− E

(
σi
ωi,T

)]
γi.

Since σi/ωi,T = (T−1ε′iMFεi)
−1/2

, ‖γi‖ < K, then using result (S.50) in Lemma S.7 we have

E
(

σi
ωi,T

)
= 1 + O (T−1), and d2,nT = O

(
T−1/2

)
. The first term can be written as d1,nT =

n−1
∑n

i=1 γiχi,T , where χi,T = −
√
T [σi/ωi,T − E (σi/ωi,T )]. It is clear that χi,T are distributed

independently over i with mean zero and bounded variances:S2

V ar (χi,T ) = T

[
E

(
T

ε′iMFεi

)
−
[
E

(
σi
ωi,T

)]2
]

= T

[
1 +O

(
1

T

)
−
[
1 +O

(
1

T

)]1/2
]

= O(1).

Hence, d1,nT = Op

(
n−1/2

)
, and the desired result (S.42) follows. Consider now (S.43) and note

that it can be decomposed as

√
T (ϕ̂nT −ϕn) =

√
T (ϕnT −ϕn) +

√
T (ϕ̂nT −ϕnT ) , (S.44)

where it is already established that the first term is op(1). Consider now the probability order

of the second term and note that it can be written as

√
T (ϕ̂nT −ϕnT ) =

√
T

n

n∑
i=1

(
γ̂i
σ̂i,T

− γi
ωiT

)
=

√
T

n

n∑
i=1

γi

(
1

σ̂i,T
− 1

ωi,T

)
+

√
T

n

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)
(γ̂i − γi) .

Now using (S.15) of Lemma S.2 we have

√
T

n

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)
γi = Op

(√
T

δ2
nT

)
= op(1).

S2When εit are normally distributed we have the exact result E
(

T
ε′
iMF εi

)
= T/(T −m− 2).
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Also by Cauchy–Schwarz inequality using (S.2) and (S.12) we have∥∥∥∥∥
√
T

n

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)
(γ̂i − γi)

∥∥∥∥∥ ≤ √T
[

1

n

n∑
i=1

(γ̂i − γi)′(γ̂i − γi)

]1/2 [
1

n

n∑
i=1

(
1

σ̂i,T
− 1

ωi,T

)2
]1/2

,

=
√
TOp

(
1

δnT

)
×Op

(
1

δ2
nT

)
= op(1).

Using the above results, we have
√
T (ϕ̂nT −ϕnT ) = op(1), which in turn establishes (S.43), as

required.

Lemma S.6 Suppose that ε ∼ IID(0, IT ), where ε = (ε1, ε2, ..., εT )′, κ1 = E (ε3
t ) , κ2 =

E (ε4
t )− 3, and A = (aij) and B = (bij) are T × T real symmetric matrices and τT is a T × 1

vector of ones. Then

E (ε′Aε) = tr(A) (S.45)

E [(ε′Aε) (ε′Aε)] = κ2Tr [(A�B)] + Tr (A)Tr (B) + 2Tr (AB) (S.46)

where A�B = B�A denotes Hadamard product with elements aijbij.

Proof. See Appendix A.5 of Ullah (2004).

Lemma S.7 Suppose that ε |F ∼ IID(0, IT ), ε = (ε1, ε2, ..., εT )′, suptE
(
|εt|4+ε) , for some

small ε > 0 and let MF = IT − F(F′F)−1F′, where F is T ×m matrix such that F′F is non-

singular. Also let zT = (T−1ε′MFε)
1/2 − 1. Then there exists T0 such that for all T > T0 we
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have

E

(
ε′MFε

T

)
= 1− m

T
= 1 +O

(
1

T

)
(S.47)

E

[(
ε′MFε

T

)2
]

= 1 +O

(
1

T

)
(S.48)

E

[(
ε′MFε

T

)1/2
]

= 1 +O

(
1

T

)
(S.49)

E

[(
ε′MFε

T

)−1/2
]

= 1 +O

(
1

T

)
(S.50)

V ar

[(
ε′MFε

T

)1/2
]

= O

(
1

T

)
(S.51)

E

[
ε2
t

(
ε′MFε

T

)]
= 1 +O

(
1

T

)
(S.52)

E

[
ε2
t

(
ε′MFε

T

)1/2
]

= 1 +O

(
1

T

)
(S.53)

E

[
ε2
t

(
ε′MFε

T

)−1
]

= 1 +O

(
1

T

)
(S.54)

E

[
ε2
t

(
ε′MFε

T

)−1/2
]

= 1 +O

(
1

T

)
(S.55)

E(zT ) = O

(
1

T

)
, and E(z2

T ) = O

(
1

T

)
(S.56)

zT = Op

(
T−1/2

)
(S.57)

Proof. Result (S.47) follows immediately from (S.45) in Lemma S.6, noting that tr(MF ) =

T −m. Result (S.48) follows using (S.46) in Lemma S.6, by setting A = B = MF , and noting

that tr [(MF�MF )] =
∑T

t=1 m
2 = O(T ), tr (M2

F ) = tr (MF ) = T −m. To establish (S.49) note

that since
√
x is a concave function of x, then by Jensen inequality we have

E

(
ε′MFε

T

)1/2

≤
[
E

(
ε′MFε

T

)]1/2

=

[
1 +O

(
1

T

)]1/2

= 1 +O

(
1

T

)
.

Similarly, by Jensen inequality

E

[(
T

ε′MFε

)1/2
]
≤
[
E

(
T

ε′MFε

)]1/2

. (S.58)

But using a result due to Lieberman (1994) (see Lemmas 5 and 21 of Pesaran and Yamagata
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(2017)) we have

E

(
T

ε′MFε

)
= 1 +O

(
1

T

)
.

Result (S.50) now follows using the above in (S.58). As for Result (S.51), it follows using (S.47)

and (S.49),

V ar

[(
ε′MFε

T

)1/2
]

= E

(
ε′MFε

T

)
−

[
E

[(
ε′MFε

T

)1/2
]]2

= 1 +O

(
1

T

)
−
[
1 +O

(
1

T

)]2

= O

(
1

T

)
Result (S.52) follows by writing ε2

t = ε′Aε where A has only one non-zero element on its diag-

onal, and then using result (S.46). Results (S.53) follows since by Cauchy–Schwarz inequality

we have

E

[
ε2
t

(
ε′MFε

T

)1/2
]

= E

[
εtεt

(
ε′MFε

T

)1/2
]

≤
[
E
(
ε2
t

)]1/2{
E

[
ε2
t

(
ε′MFε

T

)]}1/2

=

{
E

[
ε2
t

(
ε′MFε

T

)]}1/2

,

and using (S.52) it follows that

E

[
ε2
t

(
ε′MFε

T

)1/2
]
≤
[
1 +O

(
1

T

)]1/2

= 1 +O

(
1

T

)
.

The last equality follows by using Maclaurian’s expansion of
√

1 + x, where x is small. To

establish (S.54) we note that (using results in Lieberman (1994))

E

[
ε2
t

(
ε′MFε

T

)−1
]

= E

(
ε′Aε

T−1ε′MFε

)
=

E (ε′Aε)

E (T−1ε′MFε)
+O

(
1

T

)
=

T

T −m
+O

(
1

T

)
= 1+O

(
1

T

)
.

Similarly, result (S.55) follows noting that

E

[
εtεt

(
ε′MFε

T

)−1/2
]
≤
[
E
(
ε2
t

)]1/2{
E

[
ε2
t

(
ε′MFε

T

)−1
]}1/2

=

{
E

[
ε2
t

(
ε′MFε

T

)−1
]}1/2

=

[
1 +O

(
1

T

)]1/2

= 1 +O

(
1

T

)
.
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To establish (S.56), using (S.49) we first note that

E (zT ) = E

(
ε′MFε

T

)1/2

− 1 = O

(
1

T

)
. (S.59)

Similarly,

E
(
z2
T

)
= E

(
ε′MFε

T

)
+ 1− 2

(
ε′MFε

T

)1/2

=

[
E

(
ε′MFε

T

)
− 1

]
− 2

[
E

(
ε′MFε

T

)1/2

− 1

]

=

[
E

(
ε′MFε

T

)
− 1

]
− 2E (zT ) .

The desired results now follows using (S.47) and (S.59). Finally, to establish (S.57), we first note

that since MF is an idempotent matrix with rank T −m, and F is distributed independently

of ε, then

zT =

(∑T−m
t=1 (η2

t − 1)

T
+
T −m
T

)1/2

− 1,

where ηt ∼ IID(0, 1). It also follows that (note that η2
t − 1 is independent over t and has

a zero mean and a finite variance (since by assumption εt has fourth order moments) then

T−1
∑T−m

t=1 (η2
t − 1) = Op(T

−1/2).Hence, zT =
[
1 +Op(T

−1/2)
]1/2− 1 = Op

(
T−1/2

)
,as required.

Lemma S.8 The CD statistic defined by (7) can be written equivalently as,

CD =

(√
n

n− 1

)
1√
2T

T∑
t=1

( 1√
n

n∑
i=1

eit
σ̂i,T

)2

− 1

 . (S.60)

Proof. Using ρ̂ij,T =
(

1
T

∑T
t=1 eitejt

)
/σ̂i,T σ̂j,T in (7) we have:

CD =

√
2T

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1
T

∑T
t=1 eitejt

σ̂i,T σ̂j,T
=

√
2T

n(n− 1)

1

T

T∑
t=1

(
n−1∑
i=1

n∑
j=i+1

(
eit
σ̂i,T

)(
ejt
σ̂j,T

))
.

(S.61)

Further, we note that

1

n

n−1∑
i=1

n∑
j=i+1

(
eit
σ̂i,T

)(
ejt
σ̂j,T

)
=

1

2

( 1√
n

n∑
i=1

eit
σ̂i,T

)2

− 1

n

n∑
i=1

(
eit
σ̂i,T

)2
 .
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Then using this result in (S.61), and after some algebra, we have

CD =

√
2Tn2

n(n− 1)

1

2T

T∑
t=1

( 1√
n

n∑
i=1

eit
σ̂i,T

)2

− 1

n

n∑
i=1

(
eit
σ̂i,T

)2


=

√
2Tn2

n(n− 1)

1

2

 1

T

T∑
t=1

(
1√
n

n∑
i=1

eit
σ̂i,T

)2

− 1

n

n∑
i=1

1

T

T∑
t=1

(
eit
σ̂i,T

)2


=

(√
n

n− 1

)
1√
2T

T∑
t=1

( 1√
n

n∑
i=1

eit
σ̂i,T

)2

− 1

 ,
as required.

Lemma S.9 Consider the CD and C̃D statistics defined by (16) and (17), respective and

suppose that Assumptions 1-3 hold. Then, as (n, T )→∞, such that n/T → κ, where 0 < κ <

∞, we have

CD = C̃D + op (1) . (S.62)

Proof. Using (16) and (17) we first note that

(√
2 (n− 1)

n

)(
CD − C̃D

)
=

1√
T

T∑
t=1

( 1√
n

n∑
i=1

eit
σ̂i,T

)2

−

(
1√
n

n∑
i=1

eit
ωi,T

)2
 . (S.63)

Also note that
1√
n

n∑
i=1

eit
σ̂i,T

= ht,nT + gt,nT (S.64)

where (see also (A.5))

ht,nT =
1√
n

n∑
i=1

eit
ωi,T

=
c′nTet√
n

, and gt,nT =
1√
n

n∑
i=1

eit

(
1

σ̂i,T
− 1

ωi,T

)
=

d′nTet√
n

et = (e1t, e2t, ..., ent)
′, cnT = (ω−1

1,T , ω
−1
2,T , ..., ω

−1
n,T )′, dnT = (d1T , d2T , ..., dnT )′ , and diT = σ̂−1

i,T −
ω−1
i,T . Then squaring both sides of (S.64) and using the result in (S.63) we have(√

n− 1

2n

)(
CD − C̃D

)
=

1√
T

T∑
t=1

g2
t,nT +

2√
T

T∑
t=1

ht,nT gt,nT

=

√
T

n

(
1√
n

d′nTVeTdnT +
1√
n

c′nTVeTdnT

)
, (S.65)
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where VeT = T−1
∑T

t=1 ete
′
t. Now using (A.1), the error vector et can be written as

et = ut − Γ
(
f̂t − ft

)
−
(
Γ̂− Γ

)
ft −

(
Γ̂− Γ

)(
f̂t − ft

)
.

Using this expression we now have

VeT = T−1

T∑
t=1

utu
′
t + Γ

[
T−1

T∑
t=1

(
f̂t − ft

)(
f̂t − ft

)′]
Γ′ +

(
Γ̂− Γ

)(
T−1

T∑
t=1

ftf
′
t

)(
Γ̂− Γ

)′
+
(
Γ̂− Γ

)[
T−1

T∑
t=1

(
f̂t − ft

)(
f̂t − ft

)′](
Γ̂− Γ

)′
−

[
T−1

T∑
t=1

ut

(
f̂t − ft

)′]
Γ′

−

[
T−1

T∑
t=1

utf
′
t

](
Γ̂− Γ

)′
−

[
T−1

T∑
t=1

ut

(
f̂t − ft

)′](
Γ̂− Γ

)′
+ Γ

[
T−1

T∑
t=1

(
f̂t − ft

)
f ′t

](
Γ̂− Γ

)′
+ Γ

[
T−1

T∑
t=1

(
f̂t − ft

)(
f̂t − ft

)′](
Γ̂− Γ

)′
+
(
Γ̂− Γ

)[
T−1

T∑
t=1

ft

(
f̂t − ft

)′](
Γ̂− Γ

)′
.

or in matrix forms

VeT = VT + Γ

[
T−1

(
F̂− F

)′ (
F̂− F

)]
Γ′ +

(
Γ̂− Γ

)
ΣT,ff

(
Γ̂− Γ

)′
+
(
Γ̂− Γ

)[
T−1

(
F̂− F

)′ (
F̂− F

)](
Γ̂− Γ

)′
− T−1U′

(
F̂− F

)
Γ′

− T−1U′F
(
Γ̂− Γ

)′
− T−1U′

(
F̂− F

)(
Γ̂− Γ

)′
+ Γ

[
T−1F′

(
F̂− F

)](
Γ̂− Γ

)′
+ Γ

[
T−1

(
F̂− F

)′ (
F̂− F

)](
Γ̂− Γ

)′
+
[
T−1F′

(
F̂− F

)](
Γ̂− Γ

)′
where VT = T−1

∑T
t=1 utu

′
t and by Assumption 3 ‖VT‖ = Op(1). Also by results in Lemma S.1

all other terms of the above are either Op(1) or of lower order, and we also have ‖VeT‖ = Op(1).

Consider now the terms in (S.65) and note that

∣∣∣CD − C̃D∣∣∣ < K ‖VeT‖
[(

1√
n
‖dnT‖2

)
+

(
1√
n
‖cnT‖

)
‖dnT‖

]
.
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But

1√
n
‖cnT‖ =

(
n−1

n∑
i=1

ω−2
iT

)1/2

,

‖dnT‖ =
√
n

(
n−1

n∑
i=1

(
σ̂−1
i,T − ω

−1
i,T

)2

)1/2

.

By assumption ωiT > c > 0, and ω−2
iT < c−1 < ∞, and hence n−1/2 ‖cnT‖ = Op(1). Also,

using (S.22) we have
(
σ̂−1
i,T − ω

−1
i,T

)2
= Op

(
1
δ4nT

)
, and it follows that ‖dnT‖ = Op

( √
n

δ2nT

)
= op(1),

recalling that n and T are of the same order. Hence,
∣∣∣CD − C̃D∣∣∣ = op(1), as required.

Lemma S.10 Consider the latent factor loadings, γi, in model (1) and their estimates γ̂i given

by (5). Then under Assumptions 1-3 with n and T →∞, such that n/T → κ , for 0 < κ <∞,

we have

1

n

n∑
i=1

γ̂i − γi
σi

= Op

(
1

δ2
nT

)
, (S.66)

1

n

n∑
i=1

(γ̂i − γi)σi = Op

(
1

δ2
nT

)
, (S.67)

1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi = Op

(
1

δ2
nT

)
, (S.68)

1

n

n∑
i=1

σ2
i (γ̂iγ̂

′
i − γiγ ′i) = Op

(
1

δ2
nT

)
. (S.69)

Proof. Results (S.66) and (S.67) follow directly from (S.23) by setting bin = σ−1
i and bin = σi,

respectively. To prove (S.68) note that

1

n

n∑
i=1

σ̂i,T γ̂i −
1

n

n∑
i=1

σiγi

=
1

n

n∑
i=1

[(σ̂i,T − ωi,T ) + ωi,T ] [γ̂i − γi + γi]−
1

n

n∑
i=1

σiγi

=
1

n

n∑
i=1

γi (ωi,T − σi) +
1

n

n∑
i=1

γi (σ̂i,T − ωi,T ) +
1

n

n∑
i=1

σi (γ̂i − γi)

+
1

n

n∑
i=1

(ωi,T − σi) (γ̂i − γi) +
1

n

n∑
i=1

(σ̂i,T − ωi,T ) (γ̂i − γi)

= A1,nT + A2,nT + A3,nT + A4,nT + A5,nT . (S.70)

Recall also that under Assumptions 2 and 3 σi and γi are bounded and ωi,T = T−1ε
′
iMFεi, for
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i = 1, 2, ..., n are distributed independently across i, and from σi and γi. Starting with A1,nT ,

and using (S.49) we have

E
(√

nTA1,nT

)
=

√
nT

n

n∑
i=1

(γiσi)E

[(
ε
′
iMFεi
T

)1/2

− 1

]
= O

(√
nT

T

)
,

Since n and T are assumed to be of the same order then E
(√

nTA1,nT

)
= O (1). Also, using

(S.51)

V ar
(√

nTA1,nT

)
=
nT

n2

n∑
i=1

(
σ2
i γiγ

′
i

)
V ar

[(
ε
′
iMFεi
T

)1/2
]

= O (1) .

Therefore,
√
nTA1,nT = Op(1) and it follows that A1,nT = Op

[
(nT )−1/2

]
. Further, using (S.13)

setting bin = γij, for j = 1, 2, ...,m0, then it follows that

A2,nT =
1

n

n∑
i=1

γi (σ̂i,T − ωi,T ) = Op

(
1√
nδnT

)
.

Since A3,nT is the same as the result in (S.67), which is already established, then A3,nT =

Op

(
δ−2
nT

)
. Using result (S.24) it follows that

A4,nT =
1

n

n∑
i=1

(ωi,T − σi) (γ̂i − γi) = Op

(
1

δ2
nT

)
.

Using result (S.26) we have

A5,nT =
1

n

n∑
i=1

(σ̂i,T − ωi,T ) (γ̂i − γi) = Op

(
1

δ2
nT

)
.

Result (S.68) now follows since Aj,nT = Op(δ
−2
nT ), for j = 1, 2, ..., 5. Finally, consider (S.69) and

note that

1

n

n∑
i=1

σ2
i (γ̂iγ̂

′
i − γiγ ′i) =

1

n

n∑
i=1

σ2
i (γ̂i − γi) (γ̂i − γi)

′

+
1

n

n∑
i=1

σ2
i (γ̂i − γi)γ ′i +

1

n

n∑
i=1

σ2
i γi (γ̂i − γi)

′ . (S.71)
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Since σ2
i is bounded, then∥∥∥∥∥ 1

n

n∑
i=1

σ2
i (γ̂i − γi) (γ̂i − γi)

′

∥∥∥∥∥ ≤
(

sup
1≤i≤n

σ2
i

)∥∥∥∥∥ 1

n

n∑
i=1

(γ̂i − γi) (γ̂i − γi)
′

∥∥∥∥∥
≤
(

sup
1≤i≤n

σ2
i

)(
1

n

n∑
i=1

‖γ̂i − γi‖
2

)
,

and using (S.2) it follows that

1

n

n∑
i=1

σ2
i (γ̂i − γi) (γ̂i − γi)

′ = Op

(
1

δ2
nT

)
.

Now using (S.29), setting bin = σi, we have∥∥∥∥∥ 1

n

n∑
i=1

σ2
i (γ̂i − γi)γ ′i

∥∥∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

σ2
i γi (γ̂i − γi)

′

∥∥∥∥∥ = Op

(
1√
nδnT

)
,

and (S.69) follows.
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